Re-Hardening

of Hadron Transverse Mass Spectra in Relativistic Heavy-Ion Collisions

Akira Ohnishi^a in collaboration with N. Otuka^{ab}, P.K. Sahu^a, M. Isse^a, Y. Nara^c *a*. Hokkaido U., *b*. JAERI, *c*. BNL

- 1. Introduction
- 2. Pion and Proton Spectra at RHIC energies
- 3. Re-Hardening
- 4. Summary

Abstract

We analyze the spectra of pions and protons in heavy-ion collisions at relativistic energies from 2 A GeV to 65+65 A GeV by using a jet-implemented hadron-string cascade model, JAM. In this energy region, hadron transverse mass spectra first show softening until SPS energies, and re-hardening may emerge at RHIC energies. Since hadronic matter is expected to show only softening at higher energy densities, this re-hardening of spectra can be a good signature of the quark-gluon plasma formation.

\star QGP Signals

- \star Anomalous J/ψ supression
 - \bigcirc : Deconf. phase \rightarrow No Bound State (Matsui & Satz)
 - $\triangle: \sigma(J/\psi h) = \text{constant} (?) (h = N, \pi, \rho, N^*, \text{strings}, \ldots)$
 - * Strangeness Enhancement
 - $\bigcirc: \mathsf{QGP} \to \mathsf{Fast}$ Chem. Equilibrium
 - \triangle : Rope formation (Sorge),
 - \times : multi- π \rightarrow Strange particles (C. Greiner)
 - * Low-E Dilepton Enh.
 - \triangle : Partial χ -rest. rather than Deconf. (Hatsuda & Lee)
 - * Softening of particle spectra
 - : Decrease of Directed Flow (SIS-AGS)
 - \times : It can be explained in Hadron-String Scenario (Hadronic DOF + Mean Field, Sahu et al.; Otuka Thesis)
- Possible Explanation
 - 1. QGP is formed at SPS energy Pb+Pb Collisions.
 - 2. Hot and Dense (Heavy-)Resonance-String Gas (Approximate Hagedorn Gas) is formed.
 - $\star \; J/\psi + N^* \to D\bar{D}$
 - $\star \text{ string} + \text{ string} \rightarrow \text{Rope} \rightarrow Y\bar{Y}$
 - $\star \text{ Large Mass Energy} \leftrightarrow \text{Smaller Pressure}$

Key Logic: Hadron Gas becomes Softer and Softer at High Energy Density. (Hagedorn, 1965)

* Softening at SIS-AGS-SPS Chujo, Thesis.

Temperature

Collective Flow

P.K.Sahu et al., NPA672(2000)376

Y.Nara et al., PTP Suppl. 129(1997)33, N.Otuka, Thesis; to be submitted.

ARC: Y.Pang et al. PRL68('92)2743,

ART: B.A.Li & C.M.Ko, PRC52('95)2037; PRC57('98)2065.

M_t Spectra with Multi. Prod. (HANDEL)

Au(11.6 A GeV/c)+Au \rightarrow p, π^+,π^-

Thermal Evolution of Matter (JAM and HANDEL)

ेंड्र How about Re-Hardening ?

Preliminary RHIC data

- \star Pion Slope Parameter = 291 MeV (Phenix)
- * Proton Slope Parameter \simeq (400-500) MeV (H.Ohnishi for Phenix @ JPS)
- ··· Very Hard Spectra compared to those at SPS Very Hard to explain in Hadronic Scenario
- Earlier Suggestions of Hardening
 - * JACEE observation ($< P_t >$ grows quickly)
 - * Hydro + UrQMD ($< P_t >$ grows quickly)
 - * Nu Xu @ QM2001 (β (RHIC) > β (SPS))

... In this work,

 We study proton and pion M_t spectrum in SIS-AGS-JHF-SPS-RHIC energy region systematically, by using a jet-implemented hadron-string cascade (JAM),

* and demonstrate that the "Re-Hardening" is actually expected in the calculation.

JACEE results

(Y.Takahashi et al., NPA461(1987)263c)

+ Hard (Jet Production, at higher energies) [3] \star No Mean Field (in progress), No Medium Modification

[1] "DPM + Lund" (~ HIJING) + Phase Space
[2] Consituent Rescattering (~ RQMD), c= (qq), q, q
[3] Jetset (Pythia)
Version: JAM1.009.27 (April 2000 Version)

* Rapidity Distributions: Hadron Yields

$\star M_t$ Spectra: Measure of Generated Pressure

\star Decomposition to T and eta

$$\frac{d^2 N}{M_t dM_t dY d\phi} \propto \exp(-M_t/T'), \quad T'(M) = T + \frac{1}{2} M \beta^2$$

* Summary and Conclusion

• Re-Hardening of Hadron Spectra

is very hard to explain in Hadronic Scenario since more and more hadronic heavy DOFs are activated, (Otuka, Thesis)

```
then it can be a good signature of BULK QGP formation.
```

• RHIC preliminary results and JAM cal.

show re-hardening between SPS and RHIC energies.

* JAM results systematically reproduces AGS-SPS-RHIC energy heavy-ion collisions.

$$\circ dN/d\eta$$
(charged) $\simeq 570$

- $\circ \ \bar{p}/p \simeq 0.63$
- Slopes: a little softer than data
- * Local Maximum of β may appear at around JHF-NSP energies. It can be a consequence of "the highest baryon density".

