Hadronic Degrees of Freedom in High Energy Heavy-Ion Collisions

A. Ohnishi Hokkaido U.

1. Physics of HIC @ SIS-AGS-JHF Energies

* Is it in Yukawa phase or Hagedorn phase ?

2. Particle Spectra in HIC and Hadronic DOF

★ Hadronic Transport Models: HANDEL, JAM and RBUU

 \star How M_t spectrum is related to Hadronic DOF

3. Collective Flows and Nuclear EOS

 \star Nuclear Mean Field: ρ and E dep.

 \star How is the EOS soften in Hadronic Scenario ?

4. Thermal Properties of Hadronic Cascade Models

 \star Cascade in a Box: What do they tell ?

5. Summary

Collaborators:

P.K. Sahu, N. Otuka (Hokkaido), K. Niita, S. Chiba,

T. Maruyama, T. Maruyama (JAERI), Y. Nara (BNL),

W. Cassing, U. Mosel (Giessen)

- Refs. Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba Phys. Rev. C 61 (2000), 024901. (JAM)
 - P. K. Sahu, W. Cassing, U. Mosel and A. Ohnishi Nucl. Phys. A672 (2000), 376. (RBUU, Flow)
 - N. Otuka et al., in preparation.

★ What we are AIMING at

in High-Energy Heavy-Ion Collisions

• Hot and Dense Matter Properties

* Phase Diagram: Q-H, L-G

* Equation of State (EOS): Soft/Stiff/Mom. Dep.

General EOS f(E/V,N/V,T,P,...) = 0

 $\rightarrow \begin{cases} \mathsf{EOS} \text{ (narrow): } \mathsf{E}/\mathsf{A} = \mathsf{f}(\rho_B) \text{ at fixed } T \\ \mathsf{Caloric Curve: } \mathsf{T} = \mathsf{f}(\mathsf{E}/\mathsf{V}) \text{ at fixed } \rho_B \text{ or } \mathsf{P} \end{cases}$

↑ Make a Link between Stat. & Dyn.

Model Inputs

* Particle DOF $(N, \pi, \Delta, N^*, K, ...q, g)$ \leftrightarrow Elementary σ

* Nuclear Mean Field, Medium Effects

Explain the Data

HIC Observables

- * Particle Spectra $\cdots dN/dY, dN/dM_t$
- ***** Collective Flows
- * Particle Correlations

* Physics of HIC @ SIS-AGS-JHF Energies

 \times QGP Search

O Hot & Dense Hadronic/String Matter

Hadronic Particle Degrees of Freedom (DOF)

 \rightarrow Is the Hot and Dense Matter in

Yukawa phase (pion gas)

or *Hagedon phase* (resonance gas)

⇒ How much DOF are Necessary/Enough to describe HIC ?

Equation of State (EOS): How Stiff is the Matter ?

F How is the EOS soften above AGS energies ?

* How can we Extract Hadronic Matter Properties ?

- From a "Hadron-String" View Point

1. Hadronic Cascade: Particle DOF

Starting from

- * Well-known σ (Cross Sections) (Exp. Data + Well-Established Concept)
- \star and Well-Established Particle DOF (Resonances + Strings),

2. Nuclear Mean Field: EOS

and Incorporate

* Well-known Mean Field, including Mom. Dep. $(U_N \text{ is known, upto } E_{inc} = 1 \text{ GeV}).$

Comparison with HIC Data

Then make Systematic Studies

* Energy/System Size/Impact Par. Dependence

on Various Observables.

3. Matter Properties

Finally,

* Put Particles in a box and Run the Code. Then we get Matter Properties.

***** Medium Modifications

HANDEL (HAdronic Nucleus-nucleus cascade moDEL)

N. Otuka et al., in preparation.

- * DOF: g.s. Hadrons and Low-lying Res. (N, Δ , N*(1440), N*(1535), Λ , Σ , Ξ , π , K, η , ρ , ω , K*)
- * σ : Purely Hadronic (Binary + Multi) BB \leftrightarrow BR, BB \leftrightarrow RR, NN \rightarrow NKA NN \rightarrow NN $\pi\pi\pi\pi$... MB \leftrightarrow R, MB \leftrightarrow MB, π N \rightarrow N $\pi\pi\pi\pi$...

• Relation to Other Models

- ★ JAM: ~ RQMD (H. Sorge, PRC52('95),3291) for Soft Processes. (except ss fusion)
 ~ Phase Space Ver. of HIJING (X.-N. Wang et al., PRep280('97)287) for Hard Processes.
- * RBUU: = HSD (Ehehalt & Cassing, NPA602('96)449) in Cross Sections except $\sqrt{s_{SW}}$.
 - \simeq RBUU (P.K.Sahu et al., NPA640('98)493) in Mean Field.

* HANDEL: \simeq ARC (Y.Pang et al. PRL68('92)2743) & ART (B.A.Li & C.M.Ko, PRC52('95)2037)

• <u>NN Exclusive σ </u> ... Data exist upto 4 ~ 5 π Prod.

Note: t- and u-channel Reggeon Exch. are not completely incoroprated.

Reggeon Exchange Cross Sections

$\star~M_t$ Spectrum in HIC

 $M_t = \sqrt{M_0^2 + P_t^2}$

Measure of Created Pressure

Proton Spectrum in pA Collisions (JAM)

Proton Spectrum in Light Heavy-Ion Collisions (JAM)

Proton and Pion Spectrum in Au+Au Collisions (JAM)

What is the Role of DOF ?

Proton Spectrum in Au+Au Collisions (RBUU)

How about Smaller DOF Model ?

(Y.Nara et al. PTP Suppl.129('97)33)

Model-A: Previous JAM Model-B: Old HANDEL (No Multi., No Reggeon Exch.) M_t Spec. Softening Comes from Larger DOF \cdots Approximate Hagedorn Gas seems to be Realized. ***** Collective Flows and Nuclear EOS

Nuclear Mean Field

In HIC, both of

Density and Energy

dependences of U are important.

• Density Dependence: EOS (Narrow Sense)

• <u>Energy Dependence</u>: Form Factor of MB Coupling Schrödinger Equivalent Potential

$$U_{sep}(\mathsf{E}_{kin}) = U_{s} + U_{0} + \frac{1}{2\mathsf{M}}(U_{s}^{2} - U_{0}^{2}) + \frac{U_{0}}{\mathsf{M}}\mathsf{E}_{kin}$$

Form Factor: Reduce MB Coupling at High Momentum

$$\mathsf{f}_{\mathsf{S}}(\mathbf{p}) = \frac{\mathbf{\Lambda}_{\mathsf{S}}^2 - \boldsymbol{\Omega}\mathbf{p}^2}{\mathbf{\Lambda}_{\mathsf{S}}^2 + \mathbf{p}^2} \quad \text{and} \quad \mathsf{f}_{\mathsf{V}}(p) = \frac{\mathbf{\Lambda}_{\mathsf{V}}^2 - \boldsymbol{\beta}\mathbf{p}^2}{\mathbf{\Lambda}_{\mathsf{V}}^2 + \mathbf{p}^2} \;,$$

Directed (Sidewards) Flow (RBUU)

* Thermal Properties of Hadronic Cascade

Model with Small DOF may give Too Stiff Spectra ... Why do ARC and ART Explain Data ?

The Answer lies in

Multiparticle Prod. and Formation Time

ARC: Y.Pang et al. PRL68('92)2743, ART: B.A.Li & C.M.Ko, PRC52('95)2037; PRC57('98)2065.

M_t Spectra with Multi. Prod. (HANDEL)

Au(11.6 A GeV/c)+Au \rightarrow p, π^+,π^-

Thermal Evolution of Matter (JAM and HANDEL)

Temperature during HIC

$$T \simeq P/
ho$$
 (Ideal Gas EOS)

 $\rho =$ Total Hadron Number Density

Thermal Evol. in Au+Au Collision

FIs it true at Equilibrium ?

* Put Particles in a Box

··· Simulation of Hadronic Matter

Caloric Curve of Hot and Dense Matter (HANDEL)

***** Summary and Conclusion

* Heavy-Ion Collisions at AGS energies have been studied from a view point of Softening caused by the Increase of Eff. DOF

and

 ρ and Momentum Dep. Mean Field.

 \star To explain particle $\rm M_t$ spectra at AGS energies, it is nececcary to invoke DOF other than N and π either through

Explicit Treatment of Heavy-Res. and Strings or

Implicit Inclusion through Multi. Prod. with $\tau_{\rm f}$. It strongly suggests that

Appr. Hagedon Gas is Realized in this energy region.

- \star M_t spectra in various pA, AA reactions are well described consistently in JAM (devel. by Y. Nara).
- \star Both of Dir. Flow and Ellip. Flow at SIS-AGS energies have been explained simultaneously for the First Time after fitting U_N(p) (through Λ) and M_t spectra (through $\sqrt{s_{SW}}$) in RBUU (maintained by P.K.Sahu).
- \star In small DOF model, Multi. Prod. with finite $\tau_{\rm f}$ generates Effective Large Mass DOF, and compensates the explicit small DOF. This point is shown through M_t spectra in HIC and Matter Simulation in HANDEL (developed by N.Otuka).
- \star Unification of these models and Applying it to higher JHF-SPS energies are in progress.