核反応・超新星爆発時のフラグメント生成

大西明(北大理)

- 1. Introduction: Fragment 生成の物理の面白さ
 - *核物質の相図:液相・気相相転移
 - * GeV 陽子入射反応の重要性
- 2. GeV 陽子入射反応での Fragment 生成
 - * 物理としての問題: 破砕機構は分かっているか? — 奇妙な角分布
 - * 模型: 輸送模型 + Percolation 模型
 - * GeV 陽子入射反応でのフラグメント質量数分布
 - * IMF の角分布
- 3. 超新星爆発時の Fragment 生成
 - * 元素合成の機構は分かっているか?
 - * 核物質の液相・気相相転移を通じた元素生成の可能性
 - *モデル計算 (1): 相対論的平均場理論
 - *モデル計算 (2): 統計模型
 - * 宇宙の Isotope 分布

共同研究者

GeV 陽子入射反応: 平田 雄一 (北大理 → 東大医科学研), 大塚 直彦 (北大理), 高田 弘, 千葉 敏 (JAERI), 奈良 寧 (BNL), 仁 井田 浩二 (RIST) 超新星爆発: 石塚 知香子 (北大理), 住吉 光介 (沼津高専)

*様々なハドロン物質の相

= 重イオン物理の最大の目標のひとつ

- ●いかにして相の性質を引き出すか?
 - * QCD 相転移
 - * Pairing 相転移
 - * 共鳴ハドロン物質
 - * ストレンジ物質
 - *液相・気相相転移
- • •
- 液相・気相相転移

Caloric Curve (GSI) の実験結果と Negative Heat Capacity (MSU-GANIL) の実験結果が見事に一致。 問題点:「核物質」の相の情報がどこまで取り出せるか?

- - * 重イオン反応: 有限サイズ、有限時間、集団運動流 (フロー) の効果
- ______ より「きれいな」現象は無いか ?
 - * 高エネルギー軽イオン反応: 励起エネルギー大、フローは小 さい
 - *超新星爆発:実質的に無限系、無限の時間、フロー小

*高エネルギー重イオンでの Freeze Out

J. Stachel, Proc. of INPC98

 $T_{\rm Thermal} < T_{\rm Chemical}$

*原子核のカロリー曲線と液相・気相相転移

J.Pochadzalla et al.(ALADIN Collab.@GSI), PRL75('95),1040.

* 負の比熱: 一次相転移の証拠

M.D'Agostino et al. (MSU-GANIL) PLB473(2000)219

Fig. 4. Heat capacity (solid symbols) per nucleon from Eq. (2). The panel on the left (right) refers to the freeze-out hypothesis I (II). The grey contour indicates the confidence region for C_t (see text).

*加速器駆動型未臨界炉:原子核物理学の役割

* 初期核反応 = GeV 陽子による核反応: \rightarrow 原子核物理学、(荷電粒子)核データ $\cdots p, n, \alpha, \gamma, \pi, d$, IMF, 中重核 ... の生成

★ 中性子と熱の輸送:物性物理学、原子力工学、中性子核データ
 ★ 高エネルギー2次粒子による反応:

→ 原子核物理学、(荷電粒子 + 中性子) 核データ

- <u>* GeV 陽子入射での核破砕:</u> <u>物理として残っている問題</u>
- 核物質の相と Fragment 生成の関連
 - * 核反応中で何が起こり、どのような経路で Fragment が作ら れているのか?
- IMF 質量数分布
 - * V-shape: 励起残留核の従来の統計的崩壊では理解できない。
- IMF 角分布: 側方 70° ピーク

p(12GeV)+Au: K.H.Tanaka et al., NPA503(95)581c

* 励起残留核の従来の統計的崩壊では理解できない。 * 微視的な説明例なし。

ر Why ?

* GeV領域の高精度な衝突断面積必要

* フラグメンテーションの記述必要

* GeV 陽子によるフラグメント (原子核) 生成

Initial Cascade (JAM)

Multiple Scatt. + Mean Field Evol.

(QMD, Coal.)

Fragmentation (Percolation)

Coulomb Expansion + Evaporation (Stat. Dec.)

- * Put Nucleons on Site
- * Give Bond Cut Prob.
- \star Connected \rightarrow Frag.

Good Crit. Behavior, IMF Formation

JAM (Jet Aa Microscopic transport model)

Y. Nara et al., PRC61('00), 024901.

* DOF: $h(B, B^*, M, M^* (m \le 2 \text{ GeV})) + s(\text{Strings}) + Partons (at higher energies)$

* σ : Hadronic ($hh \leftrightarrow hh$, $hh \leftrightarrow h$) + Soft ($hh \leftrightarrow s$, $hh \rightarrow hs$, $hh \rightarrow ss$, $s \rightarrow hhh$... [1] $ch \leftrightarrow ch$, $ch \rightarrow cs$ (c = (qq), q, \bar{q}) [2])

+ Hard (Jet Production, at higher energies) [3]

* No Mean Field (in progress), No Medium Modification

[1] "DPM + Lund" (~ HIJING) + Phase Space
[2] Consituent Rescattering (~ RQMD), c= (qq), q, q
[3] Jetset (Pythia)
Version: JAM1.009.27 (April 2000 Version)

Coalescence 模型での重陽子生成

(Nagle et al., PRC53('96)367; Hirata, Thesis, in preparation.)

→ Percolation、動的揺らぎ、統計的多重破砕などの
 「破砕促進過程」が必要

★ IMF の角分布 ● p (11.5 GeV) + ¹⁹⁷Au でのフラグメント角分布

● IMF 生成点分布の時刻依存性

IMF production position distribution

冷えた部分のドーナツ形状からのクーロン膨張 → 側方ピーク

*まとめ

- * GeV 陽子からの核破砕
 - ... 工学的に必要、物理としてもまだ問題あり。
- * カスケード過程
 - ... JAM は RHIC エネルギーまで大体 OK
 (Fixed target に換算して 20 A TeV 程度まで → 宇宙線も 大体 OK)
- ★ フラグメント生成の標準模型: QMD + 統計崩壊(蒸発+Fission)
 …数 GeV を越える陽子入射反応では IMF 生成に問題あり
- * JAM-QMD + Percolation (動力学を反映した多重破砕模型) ... 質量数分布、角分布をほぼ (~ factor 程度で) 再現
- To Do: JAM-QMD + Coalescence + Percolation + Evaporation
 - ... 全ての時間スケールをカバーできると期待される。
- * GeV 陽子入射反応での側方ピークは何だったのか? → ドーナツ型の冷たい領域からの統計的破砕 (全体としては平衡に達していない。体積よりも形状不安定性。)