On a Possible Importance of Nuclear Liquid-Gas Phase Transition in Supernova Nucleosynthesis

- C. Ishizuka, A. Ohnishi (Hokkaido)
- K. Sumiyoshi (Numazu)

1. Heavy Element Synthesis

- When, Where and How?
 - * s- and r-processes
 - * A-distribution in the Universe
 - * Phase Diagram of Nuclear Matter
 - * Possible Importance of LG-process

2. Simple Model Calculation

- * Model (I): Relativistic Mean Field (RMF)
- * Model (II): Statistical Model of Fragments
- ⋆ Does the Supernova Evolution Path hit LG Coexistence Region ?
- * Isotope Distribution in the Universe

3. Summary and Discussion

* Synthesis of Heavy Elements

– When, Where and How ?

- Slow Neutron Capture process (s-process)
 - * Stable Nuclei upto 209 Bi
 - * Neutron Flux in Stars: Understanding is not complete
- Rapid Neutron Capture process (r-process)
 - * Heavy Neutron Rich Nuclei
 - * Most Probable Site
 - = Hot bubble region of Massive Supernovae
 - * Requires Very High Entropy/Baryon, $S/B \simeq (110-400)$ (Woosley et al. 1994, Meyer and Brown 1997, Terasawa and Kajino 1999)

Problems

- * Why is the Elements Dist. Universal?
- * How are the Heavy Proton Rich Nuclei formed?

• Hints?

- * Background A-distribution in the Universe:
 - · · · Power Law Behavior in addition to Exponential
- * Phase Diagram of Nuclear Matter
 - · · · Unstable (L-G coexistence) Region

* Simple Model (I): RMF + Adiabatic Path

Assumption:

- * Infinitely Large Liquid and Gas phase coexist.
- * Lepton to Baryon ratio is conserved. $(\nu s \text{ are still trapped.})$
- * Entropy per Baryon is conserved.
- Relativistic Mean Field (RMF)
 - ⋆ Tokyo Metro. Univ. Parameter (TM1)
 - o Fit B.E. of stable and unstable n-rich nuclei
 - Applied to SN Explosion
 - * Lagrangian $(\sigma, \omega, \rho \text{ with } \sigma^3, \sigma^4, \omega^4 \text{ terms})$

$$\mathcal{L}^{RMF} = \mathcal{L}_B + \mathcal{L}_M + \mathcal{L}_{BM}$$

$$\mathcal{L}_B = \sum_i \bar{\psi}_i (i\gamma^\mu \partial_\mu - M_i) \psi_i ,$$

$$\mathcal{L}_M = -\frac{1}{2} \sum_s m_s^2 \phi_s^2 + \frac{1}{2} \sum_v m_v^2 V_s^2 - U(\phi, V) ,$$

$$\mathcal{L}_{BM} = \sum_{s,i} g_{si} \bar{\psi}_i \phi_s \psi_i - \sum_{v,i} g_{vi} \psi_i^{\dagger} V_v \psi_i .$$

- * Phase Coexistence
 - Many Chemical Potentials (B, Q, L, ...)Maxwell Construction \rightarrow Gibbs Condition

• Adiabatic Path in SN Matter Evolution

- * Important Parameters:
 - Lepton to Baryon Ratio: $Y_l \equiv N_l/B = (0.3 0.4)$ (Takatsuka)
 - \circ Entropy per Baryon: $S/B \ge 10$ for Ejection
- * Constituents

$$\circ n, p, e, \nu_e(, \mu, \nu_\mu, ...)$$

SN Matter Adiabatic Path (Y_L=0.35)

Does it hit LG Coex. Region?

Adiabatic Path at Low Densities

SN Matter Adiabatic Path (Y_L=0.35)

Yes, it hits LG Coex. Region even at S/B > 10!

• Why, Problems and To Do

- * At low T, Entropy is mainly carried by Leptons $(e^{\pm}, \nu, \bar{\nu})$. $\leftrightarrow S/B \sim (3-6)$ at 1~A~GeV HIC
- * With lepton chemical pot., larger proton ratio can be supported than in neutron star matter.
 - → Gains Sym. Energy in Liquid phase
- $\star p/n$ ratios in L and G are different, and phases are assumed to be of infinite size.
 - → Coulomb Energy!

* Simple Model (II): Statistical Model

Stat. Model in HIC

∼ Nuclear Stat. Equil. (NSE) in Astrophys.

Statistical Model of Fragments

Stat. Equil. between Fragments

· · · Fragment-based Grandcanonical Model

$$\begin{array}{lll} \rho_f(A,Z) &=& g(T) \int \frac{d^3p}{(2\pi\hbar)^3} \exp(-(E_f-\mu_f)/T) \\ E_f &=& \frac{p^2}{2M_f} - B_f(A,Z) + V_c(A,Z) \\ \mu_f &=& Z\,\mu_p + N\,\mu_n \\ g(T) &:& \text{g.s (+ Disc. Levels)} + \text{Bethe formula} \\ V_c &:& \text{Average Interfrag. Coulomb Pot.} \end{array}$$

 (μ_p, μ_n) : Fixed from (ρ_p, ρ_n)

In SN Matter, Extension of Mass Table is needed.

- * Electron Screening
 - → Stabilize Proton Rich nuclei
- * Large Neutron Chem. Pot.
- → Stabilize Neutron Rich nuclei

• Binding Energy Correction in SN Matter

Coulomb E. Correction from Electron Screening

$$V_c(A, Z) = a_c \frac{Z^2}{A} \left(1 - \frac{3}{2} \eta + \frac{1}{2} \eta^3 \right) , \quad \eta = R_A / R_e$$

Coulomb E. Corr. of ²³⁵U in SN Matter

Large Binding Energy Corr. even at low ρ_B

• Mass Table Extension

Mass Formula: Myers & Swiatecki 1995 Extended Thomas-Fermi + Shell corr.

 \rightarrow 9000 nuclei

• Caloric Curve in Stat. Model

SN matter Caloric Curve

SN Matter Adiabatic Path (Y_L=0.35)

Finite Size: Reduce T_c , but still in the Ejection Range

Mass and Isotope Distribution

Finite Size: Reduce T_c , but still in the Ejection Range

SN Matter Adiabatic Path (Y_L=0.35)

-15

Neutron Number

* Summary and Discussion

- Summary
 - 1. Heavy Elements production through Nuclear Liquid-Gas phase transition at around the surface of Supernova Core (LG process) may be important.
 - * A Distribution in the Universe
 - * Phase Diagram of Nuclear Matter
 - * Heavy Proton Rich Nuclei
 - 2. Simple Model Calculation (I):
 - RMF + Adiabatic path
 - $\star Y_l, S/B$ are constant along the path
 - \star Critical Temperature of Nuclear LGpt $T_c \simeq 16 \text{ MeV}$
 - * Ejection Path would experience LG coex. region.
 - 3. Simple Model Calculation (II):
 - Statistical Model
 - * Extension of Nuclear Mass Table
 - * Coulomb Energy Corr. in SN Matter
 - \star Finite Size effects reduces T_c , but still in the Ejection Range
 - * Solar Isotope Dist.: seems "Thermal"
 - 4. Unified treatment of mean field and statistical features would be necessary.