Sep. 14, 2002 @ JPS

JHF, GSI における高密度核物質の物理

北大理 大西 明

1. What We Can Do with 50 GeV PS Machine ?

- * Hadron Phase Diagram
- $\star \; JHF \; \leftrightarrow \; GSI$

2. Towards the Highest Density Matter in Lab.

- $\star (\rho_B, T)$ Trajectory at JHF
- * Collective Flow: Probe of Pressure
- * Strangeness Enhancement: Rescattering or Potential ?
- * Low-Energy Di-Leptons: Probe of Chiral Symmetry Restoration
- 3. Towards LTHD (Low T & High ρ) Matter & Baryon Rich QGP Formation

* (ρ_B, T) Fluctuation: Can we make (ρ_B, T)=(10 $\rho_0, 50$ MeV) ?

4. Summary

* What We Can Do with 50 GeV PS Machine ?

- \star Proton Beam: 600 MeV \sim 50 GeV (2 orders Energy Range !)
 - Multifragmentation, Particle Production, Hadron Spectroscopy
- \star Various Intense Secondary Beams (n, μ , ν , \bar{p} , K, π , ...)
 - Strangeness Nuclear Physics
- \star HI Beam: 25 A GeV \rightarrow Most Dense Hadronic Matter Formation in Lab.
 - Hydrodynamical Evol., Caloric Curve, EOS, Hadrons in Dense and Hot Matter

َ جَتَ Suitable for studying "Phase Diagram", esp., of "Highly Dense Matter"

- Proton Beam: Elem. Proc., incl. Res., Hadron Property at ρ_0
- HI Beam: EOS of Dense Matter
- Pion/Kaon Beam: Strangeness Production, Y Potentials

* Why and How is Dense Matter Study @ JHF Interesting ?

- * Essential in Understanding Compact Steller Objects.
 - ···· EOS, Particle Ratio, Pairing, ...
 - ↔ Neutron Stars, Supernovae, Black Hole, Neutron Star Merger
- \star In addition to Particle Degrees of Freedom (hadron \leftrightarrow quark & gluon), Interaction plays vital roles.
 - \cdots FREE models fail in many ways.
- * Hadron Natures (sometimes) become clear in medium

 $\cdots \rho, \sigma, K, \eta, N^*, \Lambda^*, \Sigma^*$

* Baryon Rich QGP may be formed at JHF.

Two Projects are Competing ! JHF (Second Stage, 25 A GeV) ↔ GSI Future Project (~ 30 A GeV)

Henning (http://www.gsi.de/cbm2002/)

GSI Future Project

Gain Factors

- Primary beam intensity: Factor 100 – 1000
- Secondary beam intensities for radioactive nuclei: up to factor 10,000
- · Beam energy: Factor 15

Special Properties

- Intense, fast cooled energetic beams of exotic nuclei
- · Cooled antiproton beams up to15 GeV
- Internal targets for high-luminosity in-ring experiments

New Technologies

- Fast cycling superconducting magnets
- Electron cooling at high ion intensities and energies

G 51

· Fast stochastic cooling

\star Towards the Highest Density Matter in Lab.

• Freeze-Out Point at SIS, AGS, and SPS

Freeze-out point seems to evolve *SMOOTHLY* as a function of Incident Energy

 \rightarrow How about Trajectory ?

- <u>HI Collision at 25 A GeV</u>
- \cdots would make the Highest Density Hadronic Matter under Approximate Equilibrium

(JAM Calc., Y. Nara, FRONP99, 8/2-4, 1999 at JAERI)

• Major Topics in HEHI

- \star Collective Flow: EOS at High Density
- * Low-Mass Lepton Pair: Hadron Masses at High Density
- \star High-Mass Lepton Pair: J/ψ Suppresion at High Temperature
- * Jet Energy Loss: Parton Dynamics at High Gluon Density
- \star Strangeness Enhancement: Potential at High Density

Study of Highly Dense Hadronic Matter is NECESSARY and it's difficult to make at SPS and RHIC Energies

• Incident Energy Dependence

(Directed) Flow (dP_X/dY)

Sahu, Cassing, Mosel, AO, NPA(2000))

Elliptic Flow (V_2)

Sahu, Otuka, AO, (nucl-th/0206010)

Radial Flow (eta_t)

Exp: Nu Xu and M. Kaneta (STAR)

Otuka,Sahu,Isse,Nara,AO (nucl-th/0102051)

 $\fbox{3}$ Local Max. of β_t @ JHF

Characteristics of Flow @ JHF

- \star Smaller Spectator-Participant Interaction \rightarrow Clear Participant Dynamics
- \star Large Radial Flow \rightarrow Large Baryon Density (Int. Energy)
- → Approximately Equilibrated Dense (Baryon Rich) Matter

• Probed (ρ ,T) Region

P. Danielewicz (GSI workshop, 2002)

M. Isse (JAM-RQMD/S with p-dep. int.)

* Strangeness Enhancement: Rescattering or Potential ? Strangeness is Enhanced Sharply at $E_{inc} = 10 - 40 \text{ GeV/A}$! NA49 (nucl-ex/0205002)

JHF Energy: \sim Maximum K/ π ratio

Possible Explanations * Rescattering of Resonances/Strings (RQMD)

* Baryon Rich QGP Formation (Right Fig.)
* High Baryon Density Effect (Associated Prod. of Y)

Κ

π

Y

Ν

* Low-Energy Di-Leptons: Probe of Chiral Symmetry Restoration

KEK-PS-E325

CERN-SPS-CERES/NA45 CERN-SPS-CERES pA (T \simeq 0, $\rho_B \simeq \rho_0$) Pb+Au (40 A GeV) Pb+Au (158 A GeV)

Possible Explanations: \sim In-Medium Partial Chiral Symmetry Restoration Effects ! ··· Spectral function mod. (mass shift, broadening), π - π Amplitude mod., σ - ω mixing

Sep. 13-14, 2002, JPS Dense QCD Symp. @ Rikkyo U.

ho_B Effects are more direct than those of T !

 \star Rho meson mass shift

$$m_{\rho}^{*} = m_{\rho} \left(1 - C\rho_{B}/\rho_{0}\right) \left(1 - T/T_{c}^{\chi}\right)^{a}$$

(C ~ 0.15, $T_{c}^{\chi} \sim 200 \text{MeV}, a \sim 0.3$)

* σ - ω Mixing: $\sigma\omega\omega \rightarrow \sigma\delta\omega < \omega >, < \omega > \propto \rho_B$

\star Towards LTHD (Low T & High $\rho)$ Matter & Baryon Rich QGP Formation

Sep. 13-14, 2002, JPS Dense QCD Symp. @ Rikkyo U.

• How Cold Matter we can make at JHF ?

Events with T < 50 MeV at $\rho_B > 5\rho_0 \rightarrow 1/1000 \sim 1/10000$ \rightarrow Precursor Signal of CSC ? (Kitazawa, Koide, Kunihiro, Nemoto, 2002)

\star Summary

- * Heavy-Ion Collision Experiment at JHF (JKJ-50 GeV) is Suitable for Exploring "Highly Dense Matter".
 - \circ Formation Time and γ Factor limit the Incident Energy Region to form Baryon Rich Matter.
 - EoS of Cold & Dense Matter
 - \rightarrow Supernova, NStar, Color Super
 - Hadron Properties in Dense Matter may be very different....
 - \rightarrow Chiral Sym., Interaction, Phase Transition, ...
- * We can probe "Dense Matter" in Three Ways at JHF (JKJ-50 GeV)
 - Strangenss Nuclear Physics $(\Lambda, \Sigma, \Xi, K, ...)$
 - Heavy-lon Physics (High ρ_B and High T)
 - Rare Event Search in Heavy-Ion Physics (High ρ_B and Low T)