Systematic Study of Radial and Elliptic Flows in High-Energy Heavy-Ion Collisions

A. Ohnishi^a, P.K. Sahu^b, M. Isse^a, N. Otuka^c, and Y. Nara^d

- ^a Div. of Phys., Grad. School of Sci., Hokkaido Univ., Sapporo 060-0810, Japan
- ^b Institute of Physics, Bhubaneswar, India
- ^c VBL, Hokkaido Univ., Sapporo, Japan
- ^d RIKEN-BNL Research Center, BNL, NY, USA

Our Refs.

- Y. Nara, N. Otuka, A. Ohnishi, T. Maruyama, Prog. Theor. Phys. Suppl. 129 (1997) 33.
- Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, Phys. Rev. C 61 (2000), 024901. (JAM)
- P. K. Sahu, W. Cassing, U. Mosel and A. Ohnishi, Nucl. Phys. A672 (2000), 376. (RBUU, Flow)
- N. Otuka, P.K. Sahu, M. Isse, Y. Nara and A. Ohnishi, nucl-th/0102051 (RHIC, radial flow)
- P.K. Sahu, N. Otuka, N. Ohnishi, Pramana-J. Phys., in press; nucl-th/0206010 (RHIC, v2)

Contents

- \star Hydrodynamical Signals of QGP at RHIC
 - ... Re-Hardening and Early Thermalization
- \star Hadron-String Cascade Model from SIS to RHIC (JAM)
- \star Hadronic Spectra from SIS to RHIC
- \star Elliptic Flow from SIS to RHIC
- * Summary

\star Hydrodynamical Signals of QGP at RHIC

- Proposed and Observed Signals of QGP
 - * Anomalous J/ψ supression: Uncertain $\sigma(hh)$
 - \star Strangeness Enhancement: Uncertain $\sigma(hh)$
 - * Low-E Dilepton Enh.: Partial Chiral Restoration
 - \star Softening of particle spectra: Hagedorn Gas
 - * Jet Energy Loss: Dense Partonic Gas (not fixed yet ?)

← Clear Bulk/Hydrodynamical Signal is desired. → Strong Radial and Elliptic Flows at RHIC

• Observed "Re-Hardening" Signature

Nu Xu and M. Kaneta, NPA698(2002), 306; nucl-ex/0104021

Strong Radial Flow Appears at RHIC !

• Strong Elliptic Flow EOS,E895,E877,NA49,STAR

• Naive Expectations

If QGP is formed,

* Pressure is expected to Grow Again (Bag Model). \rightarrow Larger Radial Flow

* Thermalization Time would be Much Shorter (Free from Hadronic Formation Time, $\tau \sim 1 \text{ fm/c}$). \rightarrow Larger Elliptic Flow In this work,

- * We analyze radial and elliptic flows from SIS to RHIC energies systematically in a realistic dynamical hadron-string cascade model including mini-jet production (JAM).
- \star We will show that Hadron Rapidity and m_{T} Spectra are well explained EXCEPT for very stiff proton and anti-proton m_{T} spectra at RHIC,
- * and that Elliptic Flows are in the Range of Hadron-String Cascade when Mean Field Effects are included up to SPS energies, but we CANNOT explain Strong Elliptic Flow at MID-RAPIDITIES in RHIC.

***** Hadron-String Cascade Model from SIS to RHIC

JAM (Jet Aa Microscopic transport model)

Y. Nara et al., PRC61('00), 024901.

DOF: $h(B, B^*, M, M^* (m \le 2 \text{ GeV})) + s(\text{Strings}) + \text{Mini-Jet Partons}$

 σ : Hadronic ($hh \leftrightarrow hh$, $hh \leftrightarrow h$) + Soft [1,2] + Hard [3]

[1] "DPM + Lund" (~ HIJING) + Phase Space (hh↔s, hh→hs, hh→ss, s→hhh...)
[2] Consituent Rescattering (~ RQMD) (c= (qq), q, q ch↔ ch, ch→ cs (c= (qq), q, q))
[3] Jetset: Pythia (Mini-Jet Production)

\star Hadronic Spectra from SIS to RHIC

• Rapidity and m_T Distributions (N. Otuka et al. nucl-th/0102051)

 \checkmark Good EXCEPT FOR anti-proton (and proton) m_T spectra at RHIC

 $Sep. 30\text{-}Oct.4,\ 2002,\ PANIC02$

• Decomposition to T and β

$$\frac{d^2 N}{M_t dM_t dY d\phi} \propto \exp(-M_t/T'), \quad T'(M) = T + \frac{1}{2} M \beta^2$$

• Temperature and Radial Flow from SIS to RHIC

\star Elliptic Flow from SIS to RHIC

• Incident Energy Dependence (P.K.Sahu et al., nucl-th/0206010)

[•] Larger than Data up to SPS \rightarrow Mean Field Effects ?

• Mean Field Effects (M. Isse et al.)

(* Stronger P_t are introduced)

 γ Mean Field Shifts V₂ Downwards

 \rightarrow Upward Shift at RHIC cannot be explained by Hadronic Mean Field

• P_T and Impact Parameter Dependence (P.K.Sahu et al., nucl-th/0206010)

• Where Do We Underestimate V $_2$? : Pseudo-Rapidity Dependence

 $(\mathrm{P.K.Sahu~et~al.,~nucl-th}/0206010)$

• Why Do We Underestimate V₂ ? : Time Dependence

F In Hadron-String Scenario,

Formation Time and Interaction Suppression before String Decay Make V_2 to Grow Later !

 \rightarrow Almond Shape is Already Obscured due to Large γ !

\star Summary

- * RHIC data show **RE-HARDENING and EARLY THERMALIZATION** at mid-rapidities.
- * Hadron-String Gas CANNOT BE STIFFER again at Higher Energy Densities. (Reduction of Repul. Int./Increase of Hadronic DOFs)
- \star In Hadron-String Scenario,
 - Re-Hardening Signature is TOO WEAK,
 - \circ and Thermalization is TOO SLOW,
- \star The above observations suggest the necessity of Extra Pressure Generation in the Early Stage of Collisions such as that from QGP formation at mid-rapidities for RHIC.
- \star Several Theoretical Supports
 - Success of Hydrodynamical description of V2 at mid-rapidities (Hirano PRC65(2001)011901; P.F. Kolb et al., NPA696(2001)175.)
 - \circ AMPT: Partonization of Strings + Parton Cascade

- \star Problems to be solved
 - \circ Multiple Scattering Scheme
 - Partonization: Initial Condition
 - \circ Hadronization \cdots String/Parton Coalescence
 - Parton Cascade incl. Inelastic Scattering