March 15-17, Strangeness @ KEK

Structure Study of Light Hypernuclei in AMD

A. Isshiki, A. Ohnishi (Hokkaido Univ.)

- 1. Introduction
- 2. AMD with Double Parity Projection
- 3. Results: ${}^9_{\Lambda}\text{Be}$, ${}^{13}_{\Lambda}\text{C}$, and ${}^{12}_{\Lambda}\text{C}$
- 4. Summary

* Introduction: Recent Developments in Hypernuclear Spectroscopy

- High Resolution Experiments

 (π⁺, K⁺) Reaction ΔE < 2 MeV
 γ ray with Ge array ΔE ~ keV

 Fine Structures, Core Exc.
 Good YN Int & Precise Calc.
 - * Nijmegen vs Quark Model
 - \star G-matrix
 - \star Three-Body Corr. in OPEN shell core
 - * Three-, Four-Body Calc.

FIG. 2. Excitation spectrum of ${}^{12}_{\Lambda}C$ observed in the (π^+, K^+) reaction at $p_{\pi} = 1.06 \text{ GeV}/c$ using the SKS spectrometer. The vertical scale gives a cross section integrated from 2 to 14 deg after correcting the angular dependence of the spectrometer acceptance. The energy resolution is better than 2.0 MeV.

T.Hasegawa et al., Phys. Rev. Lett. **7**4, 224 (1995)

***** New Roles of Hyperon

- $\star~\Lambda$ Modifies Core,
- $\star \Lambda$ Shrinks Core,
- * A sp Exc. Couples to Core Exc.,
- \star Λ Mixes with Σ ,
- \star Λ and Σ Softens EOS,

*

One Typical Role, .. Parity Mixing Intershell Coupling

T. Motoba, Nucl. Phys. A 639 (1998) 135

Parities of Core and A themselves are NOT Good Quantum Numbers. Reflection Asymmetric Intrinsic State in Spin-Isospin Unsaturated System.

* Antisymmetrized Molecular Dynamics (AMD)

... Intrinsic System is not necessarily spherical.

H. Horiuchi and Y. Kanada-En'yo, Nucl. Phys. A 588,121(1995)

- AMD Study of Hypernuclei and Strange Systems
 - * Slater Determinant of Baryon Gaussian Wave Packets
- \bigcirc No Model Assumption on Shape and Clustering
- \bigcirc Cluster/Shell Structure Change
- Feasibility of Parity Projected Cooling
 - \rightarrow Reflection Asymmetry is not artificially suppressed in Intrinsic State
- \bigcirc Feasibility of J^{π} Projection
- \bigcirc Good Transition Matrix Elements (*jj* vs *LS* Coupling of Spin)
- × Parities of Core and Λ are not separately projected \leftrightarrow MO by Itagaki-Okabe-Ikeda/ Double J^{π} Proj. by Descouvement et al.
- × Numerical J^{π} Proj. \rightarrow Accuracy in Excitation Energies
- \times Single Particle Wave Function is Gaussian, and Nodes are generated by Antisymmetrization
 - \rightarrow No Nodes of Λ wf in Single Hypernuclei
 - $\leftrightarrow \text{ Dote-Akaishi-Horiuchi}$
- \times High CPU Cost

- Previous Applications of AMD to Strangeness Nuclear Physics
 - * Hyperfragment Formation from Stopped K^- (Nara, Ohnishi, Harada, 1995)
 - ★ Single/Twin/Double Hyperfragment Formation from Stopped Ξ⁻ (Hirata, Nara, Ohnishi, Harada, Randrup, 1999)
 - Kaon Implanted Nuclei (Dote, Akaishi, Horiuchi)
- \rightarrow No Study on "Excitation Levels"

In this work, We study

Hypernuclear Excitation Spectra in AMD with Double Parity Projection

of Core and the Total System.

***** AMD with Double Parity Projection

$$|\Psi\rangle = |\Psi_{core}(Z)\rangle \otimes |\psi_{\Lambda}(z)\rangle + \pi |\Psi_{core}(-Z)\rangle \otimes |\psi_{\Lambda}(-z)\rangle \\ + \pi_{c}|\Psi_{core}(-Z)\rangle \otimes |\psi_{\Lambda}(z)\rangle + \pi \pi_{c}|\Psi_{core}(Z)\rangle \otimes |\psi_{\Lambda}(-z)\rangle$$

* Parities of Core and the Total System is Projected by Adding the Core Reflected States before Variation (Cooling). $\rightarrow \Lambda$ Parity is projected automatically. • Densities: ^{12}C and $^{13}_{\Lambda}\text{C}$

• Usual Parity Projection Mixes Up Core Parity Exc. and p_{Λ} Exc.

• DPP helps to separate Core Exc. and p_{Λ} Exc.

 \bullet Densities: ^{11}C and $^{12}_{\Lambda}\text{C}$

★ Results (Preliminary)

- Interactions
 - \star NN: Volkov No. 2 (B=H=0.125) & G3RS LS interaction
 - \star YN: Central One Range Gauss
- Wave Functions
 - \star Single Baryon wf: Gaussian with common ν
 - \star Baryon Spins are fixed to have z or -z direction
 - * Superposition of Slater Determinants given with Cooling (Parity Non-Projected), Total Parity Projected Cooling, and Double Parity Projected Cooling
 - * In Double Parity Projection, following "COREs" are considered. ${}_{\Lambda}^{5}$ He (${}_{\Lambda}^{9}$ Be) / 11 C (${}_{\Lambda}^{12}$ C) / 12 C (${}_{\Lambda}^{13}$ C)
 - * Effects of Double Parity Projection is very small in normal nuclei.

• J^{π} Projection

- * Numerically Performed (12×12×12)
- \star For the same K but different $J,\ D$ functions are Orthogonalized on the Mesh Points by using the Schmidt Method

				BE(core)		$S(\Lambda)$		
	m	LS	YN	Exp.	AMD	Exp.	AMD	+DPP
$^{8}\text{Be}, {}^{9}_{\Lambda}\text{Be}$	0.51	1000	-40	56.5	55.4	6.7	6.4	6.6
$^{11}C, {}^{12}_{\Lambda}C$	0.56	1100	-40	73.4	71.9	11.2	11.1	11.8
$^{12}C, {}^{13}_{\Lambda}C$	0.59	1800	-35	92.3	93.0	11.7	10.5	11.2

Notes: No Spin-Dependent YN Int. are included.

• Excitation Spectra (I): ⁹_ABe

* ⁸Be core \rightarrow Already Symmetric \rightarrow No DPP Effect (not shown) * ⁵_AHe core \rightarrow Already Accounted in AMD

• Excitation Spectra (II): ${}^{13}_{\Lambda}C$

* ¹²C core $\rightarrow E^*(3^-) = 9.6 \text{ MeV} (\text{Cluster Exc.}) \sim \varepsilon(p_\Lambda)$... Splitting of Negative Parity States ($E^* \sim 15 \text{ MeV}$)

• Excitation Spectra (III): ¹²_AC

March 15-17, Strangeness @ KEK

 ${}^{12}_{\Lambda}\mathsf{C}: {}^{11}\mathsf{C} \operatorname{core} \to E^*(\pi = +1) < \varepsilon(p_{\Lambda})$

- Negative Parity States
 - \star Coupling of Core Exc. Negative Parity States and Λ Spin
- Positive Parity States
 - * Core Exc. Pos. Parity States ($E^* = (7-9)$ MeV, s_{Λ})
 - * Possibly, Parity Mixing Intershell Coupling States ($E^* \gtrsim 10 \text{ MeV}$)

\star Summary

- \star We have developed(?) AMD with Double Parity Projection (DPP).
 - Parities of Core and the Total System is Projected before Variation.
 - $\rightarrow \pi(\Lambda)$ is also Projected automatically, then Λ can have a node in the p_Λ state.
- \star DPP is not effective in normal nuclei, and hypernuclei having (intrinsically) reflection symmetric core.
- \star For hypernuclei with core nuclei which can be (intrinsically) reflection asymmetric, DPP helps to separate Core Exc. and Single Particle Exc. of Λ .
- * In ${}^{13}_{\Lambda}$ C, Core $(3^-) \otimes s_{\Lambda}$ State is expected to appear just above Core $(gs) \otimes p_{\Lambda}$ State.
- * In ${}^{12}_{\Lambda}$ C, Core $(\pi = -1) \otimes s_{\Lambda}$ States are expected to appear at around $E^* = (7-9)$ MeV. $E^* = 11$ MeV State may have core excited components.
- * If the Exchange Current (two-body current) is important in (e, e') reaction, Core Excited Hypernuclear States may be formed more abundantly in $(e, e'K^+)$ reactions.
- \star Detailed Analysis of the w.f. (Intershell Coupling), Extension of wf Space (GCM for core, spwf extension for Λ), Reliable YN Interactions, are necessary.