SU(3) chiral linear σ model for positive and negative parity baryons in dense matter

A. Ohnishi, K. Naito (Hokkaido Univ.)

- Introduction: Hyperons in Dense Matter
- SU(3) Chiral sigma model with baryons
- Application to Symmetric Nuclear Matter
- Summary

Hadronic Matter Phase Diagram

Hadronic Matter Phase Diagram

Hyperons in Dense Matter

Hyperons in Neutron Star (cf Talk by Bombaci, Vidana)

* Tsuruta-Cameron (66), Langer-Rosen (70), Pand-haripande (71), Itoh(75), Glendenning, Weber-Weigel, Sugahara-Toki, Schaffner-Mishustin, Balberg-Gal, Baldo et al., Vidana et al., Nishizaki-Yamamoto-Takatsuka, Kohno-Fujiwara et al., ...

Hyperons during Supernova Explosion

- * Supernova explode in pure 1D hydro, but with v transport shock stalls.
- * 3 %increase of v flux revive shock wave (Janka et al.)
- Hyperons increase explosion energy by around 4 % (Ishizuka, AO, Sumiyoshi, Yamada, in preparation)

Hyperons play crutial roles in dense matter, such as in neutron stars and supernova explosion.

Hyperon Potentials at High Densities

* Hyperon Potentials at around ρ_0

 $U(\Lambda) \sim -30$ MeV

 $U(\Xi) \sim -(14 - 16)$ MeV (KEK-E224, BNL-E885, BNL-E906)

 $U(\Sigma) \sim (-30 \sim +150)$ MeV

(Pararell Session 1, 3)

* Hyperon Potentials at high densities (V. Koch's talk)

Exp't Info. : Hyperon flow, K^+/π^+ enhancement, Theor. Prediction: *Strongly depends on the model* (Shinmura's Talk)

We need reliable models with smaller number of free parameters and/or derived from the first principle. \rightarrow Chiral Symmetry

Nuclear Matter in SU(2) Chiral Linear σ Model

- Chiral Linear σ Model
 - * Good model in describing hadron properties.
 - * Dynamical change of σ condensate \rightarrow suitable for nuclear matter study
- Problems in Nuclear Matter
 - * Naive model leads to sudden change of condensate, $\sigma \sim f_{\pi} \rightarrow 0$ \rightarrow Dynamical generation of ω meson mass ($\sigma \omega$ coupling) (J. Boguta, PLB120,34/PLB128,19)
 - ★ Equation of State is too stiff.
 → Loop Effects (vacuum renormalization) (N.K. Gledenning, NPA480,597, M. Prakash and T. L. Ainsworth, PRC36, 346)
 - * Higher order terms ($\sigma 6$, $\sigma 8$) (P.K. Sahu and AO, PTP104,1163)

Can we soften the EOS with Hyperons ?

Does Hyperon Potential Help It ?

- * Rescattering of Resonances/Strings (RQMD)
- * Baryon Rich QGP Formation
- * High Baryon Density Effect (Associated Prod. of Y)

At $\rho > 4 \rho_0$, Hyperon Feels More Attractive Potential than N

Ohnishi and Naito, Hyp2003, J-Lab, Oct. 14-18, 2003

π

SU(3) Chiral Linear σ Model with Baryons

BBM coupling in SU(2) chiral linear σ model

Hadron transformation

* Baryons: fundamental repr.

$$N = \begin{pmatrix} p \\ n \end{pmatrix}$$
, $N_L \to L N_L$, $N_R \to R N_R$

* Mesons: Adjoint repr.

 $M = \Sigma + i \Pi \to L M R^+$

Chiral Invariant Coupling

$$L_{BBM} = g(N_L^+ M N_R + N_R^+ M^+ N_L)$$

$$\rightarrow g(N_L^+ L^+ L M R^+ R N_R + c.c.)$$

 \rightarrow How about in SU(3)?

Mesons and Baryons in SU(3)

Meson Matrix

$$M = \begin{vmatrix} u \overline{u} & u \overline{d} & u \overline{s} \\ d \overline{u} & d \overline{d} & d \overline{s} \\ s \overline{s} & s \overline{d} & s \overline{s} \end{vmatrix}$$

$$M_{PS} = \Pi = \begin{vmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}} & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{2\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}} \end{vmatrix}$$

Baryon Matrix

$$\Psi = \begin{vmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ E^{-} & E^{0} & -\frac{2\Lambda}{\sqrt{6}} \end{vmatrix}$$

BBM Coupling in SU(3) Chiral Linear σ Model • Mesons: Transforms as in SU(2) $M = \Sigma + i \Pi \rightarrow LMR^+$

- **Baryons:** Two kind of transformations are proposed
 - * Type 1: Stokes-Rijken '97, Gasiolowiz-Geffen 60's $\Psi_L^{(1)} \rightarrow L \Psi_L^{(1)} L^+$, $\Psi_R^{(1)} \rightarrow R \Psi_R^{(1)} R^+$
 - Lowest order chiral invariant coupling = BMBM $Tr\left(\overline{\Psi}_{L}^{(1)}M\Psi_{R}^{(1)}M^{+}\right) \rightarrow Tr\left(L\overline{\Psi}_{L}^{(1)}L^{+}LMR^{+}R\Psi_{R}^{(1)}R^{+}RM^{+}L^{+}\right)$
 - * Type 2: Papazoglou et., 98

 $\Psi_L^{(2)} \to L \Psi_L^{(2)} R^+$, $\Psi_R^{(2)} \to R \Psi_R^{(2)} L^+$

Lowest order chiral invariant coupling = *D*-*type coupling*

$$\mathsf{Det}\,'\!\left(\overline{\Psi}_{R}^{(2)}, M, \Psi_{L}^{(2)}\right) \equiv \epsilon_{ijk} \epsilon_{lmn} \overline{\Psi}_{Ril}^{(2)} M_{jm} \Psi_{kn}^{(2)} \rightarrow |R| |L| \mathsf{Det}\,'\!\left(\overline{\Psi}_{R}^{(2)}, M, \Psi_{L}^{(2)}\right)$$

Relation to Quark Field

- Spin half 3 quark field
- * * Positive Parity, Having NR Limit (8 states)

$$B_{dc}^{(1)} = N^{-3} \left(q_{i,a}^T C \gamma_5 q_{j,b} \right) q_{k,d} \epsilon_{ijk} \epsilon_{abc}$$

* Negative Parity, No NR Limit (9 states)
$$B_{dc}^{(2)} = N^{-3} \left(q_{i,a}^T C q_{j,b} \right) q_{k,d} \epsilon_{ijk} \epsilon_{abc}$$
(ijk: color, abcd: flavor)

Transformation properties

$$\begin{split} \Psi^{(1)} &\equiv \left(B^{(1)} + \gamma_5 B^{(2)} \right) / \sqrt{2} , \quad \Psi^{(2)} \equiv \left(B^{(1)} - \gamma_5 B^{(2)} \right) / \sqrt{2} \\ &\qquad \Psi_L^{(1)} \to L \Psi_L^{(1)} L^+ , \quad \Psi_R^{(1)} \to R \Psi_R^{(1)} R^+ \\ &\qquad \Psi_L^{(2)} \to L \Psi_L^{(2)} R^+ , \quad \Psi_R^{(2)} \to R \Psi_R^{(2)} L^+ \end{split}$$

SU(3) Chiral Invariant BBM Coupling Trace type (G.A. Christos, PRD35 (1987), 330). $I^{Tr} = \frac{g_{tr}}{\nabla r} \frac{\overline{\psi}^{(1)}}{\sqrt{\psi}^{(2)}} \frac{\overline{\psi}^{(1)}}{\sqrt{\psi}^{(1)}} M^{+} \frac{\psi^{(2)}}{\sqrt{\psi}^{(1)}} + h c$

$$-L_{BM}^{Tr} = \frac{g_{tr}}{\sqrt{2}} \operatorname{Tr}\left(\overline{\Psi}_{L}^{(1)} M \Psi_{R}^{(2)} + \overline{\Psi}_{R}^{(1)} M^{+} \Psi_{L}^{(2)}\right) + h.c.$$
$$= g_{tr} (d_{abc} + if_{abc}) \left(\overline{\psi}^{1a} m^{b} \psi^{2c} + h.c.\right)$$

Determinant type (Papazoglou et. al. PRC57 ('98) 2576)

$$-L_{BM}^{Det} = \sqrt{2} g^{det} \left(\text{Det}' \left(\overline{\Psi}_{R}^{(2)}, M, \Psi_{L}^{(2)} \right) + h.c. \right)$$
$$= 2 g_{det} d'_{abc} \overline{\psi}^{2a} m^{+b} \psi^{2c}$$
$$\left(m^{a} \equiv \sigma^{a} + i \gamma_{5} \pi^{a} \right)$$

In order to have both of D and F type BBM Coupling, We need two types of baryons !

Baryon Masses Explicit Breaking term **Mean Field Approx.** + Diagonalization $-L_{BM}^{MF} = \sum_{i} \left(\overline{\psi}_{i}^{1} \quad \overline{\psi}_{i}^{2} \right) \begin{vmatrix} \mathbf{0} & g_{tr} \sigma_{i} + \mathbf{n}_{i}^{s} \mathbf{m}_{s} \\ \mathbf{0} & g_{tr} \sigma_{i} + \mathbf{n}_{i}^{s} \mathbf{m}_{s} \\ g_{tr} \sigma_{i} + \mathbf{n}_{i}^{s} \mathbf{m}_{s} & -g_{det} \sigma'_{i} \end{vmatrix} \begin{pmatrix} \psi_{i}^{1} \\ \psi_{i}^{2} \end{vmatrix}$ $= \sum_{i} \left(\overline{\psi}_{i}^{[+]} \quad -\overline{\psi}_{i}^{[-]} \right) \begin{pmatrix} \mathbf{M}_{i}^{[+]} & \mathbf{0} \\ \mathbf{0} & -\mathbf{M}_{i}^{[-]} \end{vmatrix} \begin{pmatrix} \psi_{i}^{[+]} \\ \psi_{i}^{[-]} \end{vmatrix}$

Positive and Negative Parity Octet Baryon Masses $\sigma_{i} \equiv \sqrt{\frac{2}{3}} (\sigma_{0} + a_{i} \sigma_{8}) , \quad \sigma'_{i} \equiv \sqrt{\frac{2}{3}} (\sigma_{0} + b_{i} \sigma_{8})$ $\begin{pmatrix} \psi_{i}^{1} \\ \psi_{i}^{2} \end{pmatrix} = \begin{pmatrix} \cos \theta_{i} & -\sin \theta_{i} \\ \sin \theta_{i} & \cos \theta_{i} \end{pmatrix} \begin{pmatrix} \psi_{i}^{[+]} \\ \gamma_{5} \psi_{i}^{[-]} \end{pmatrix}$ $M_{i}^{[\pm]} = \sqrt{|g_{tr} \sigma_{i} + n_{i}^{s} m_{s}|^{2} + (g_{det} \sigma'_{i}/2)^{2}} \pm g_{det} \sigma'_{i}/2$

Four Free Parameters < Numbers of Baryon Masses to be fitted

$$\begin{aligned} & \mathcal{M}eson \ Lagrangian: \ Standard \\ \mathcal{L} &= \frac{1}{2} \mathrm{tr}[\partial_{\mu} M \partial^{\mu} M^{\dagger}] - \frac{1}{2} \mu^{2} \mathrm{tr}[M M^{\dagger}] \\ &\quad - \lambda \mathrm{tr}[M M^{\dagger} M M^{\dagger}] - \lambda' \mathrm{tr}[M M^{\dagger}]^{2} + c(\det M + \det M^{\dagger}) \\ &\quad + \frac{\sqrt{3}D}{4} \left\{ \mathrm{tr}[M M^{\dagger} \lambda^{8}] + \mathrm{tr}[M \lambda^{8} M^{\dagger}] \right\} + c_{\sigma} \sigma + c_{\zeta} \zeta \end{aligned}$$

Kinetic+ Second order + Fourth order + Det. Int. + Explicit breaking

Application

to Symmetric Nuclear Matter

$$\begin{aligned} Mean \ Field \ Lagrangian \\ L^{MF} &= \frac{\mu^2}{2} \left(\sigma^2 + \zeta^2 \right) - \frac{\lambda}{4} \left(\sigma^2 + \zeta^2 \right)^2 - \frac{\lambda'}{4} \left(\sigma^4 + 2\zeta^4 \right) + c \, \sigma^2 \zeta \\ &- \nu \zeta^2 + H_\sigma \sigma + H_\zeta \zeta \\ &+ \sum_i \left(\sum_{k=1,2} \overline{\psi}_i^k \, i \, \partial_\mu \gamma^\mu \psi_i^k \right) \\ &+ \sum_i \left[g_{tr} \left(\overline{\psi}_i^1 \psi_i^2 + \overline{\psi}_i^2 + \psi_i^1 \right) \left(\sigma_i + n_i^s \, m_s \right) - g_{det} \, \overline{\psi}_i^2 \psi_i^2 \sigma'_i \right] \end{aligned}$$

* Equation of Motion

$$\frac{\partial L}{\partial \sigma} = \mu^2 \sigma - \lambda (\sigma^2 + \zeta^2) \sigma - \lambda' \sigma^3 + 2c \sigma \zeta + H_{\sigma} - g_{\sigma}^{[+]} \rho_s = 0$$

In Symmetric Nuclear Matter,

$$\boldsymbol{g}_{\sigma}^{[+]} = 2 \boldsymbol{g}_{tr} \sin \theta_N \cos \theta_N - \boldsymbol{g}_{det} \cos \theta_N^2$$

Free Energy (1): without $\sigma \omega$ Coupling

Sudden Chage of σ Value \rightarrow Chiral Phase Transition below ρ_0

10/2

Onnishi unu Muilo, 119p2003, J-Luo, Oci. 14-10, 2003

$$\begin{aligned} Mean \ Field \ Lagrangian \\ L^{MF} &= \frac{\mu^2}{2} (\sigma^2 + \zeta^2) - \frac{\lambda}{4} (\sigma^2 + \zeta^2)^2 - \frac{\lambda'}{4} (\sigma^4 + 2\zeta^4) + c \, \sigma^2 \zeta \\ &- \nu \zeta^2 + H_\sigma \sigma + H_\zeta \zeta \\ &+ \sum_i \left(\sum_{k=1,2} \overline{\psi}_i^k \, i \, \partial_\mu \gamma^\mu \psi_i^k \right) \\ &+ \sum_i \left[g_{tr} (\overline{\psi}_i^1 \psi_i^2 + \overline{\psi}_i^2 + \psi_i^1) (\sigma_i + n_i^s \, m_s) - g_{det} \, \overline{\psi}_i^2 \psi_i^2 \sigma'_i \right] \\ &- g_{VB} \omega \rho_B + \lambda_{VS} \sigma^2 \omega^2 / 2 \end{aligned}$$

★ Equation of Motion

$$\frac{\partial L}{\partial \sigma} = \mu^{2} \sigma - \lambda (\sigma^{2} + \zeta^{2}) \sigma - \lambda' \sigma^{3} + 2c \sigma \zeta + H_{\sigma} - g_{\sigma}^{[+]} \rho_{s} + \lambda_{VS} \sigma \omega^{2} = 0$$

$$\frac{\partial L}{\partial \omega} = -g_{VB} \rho_{B} + \lambda_{VS} \sigma^{2} \omega = 0 \rightarrow \omega = g_{VB} \rho_{B} / \lambda_{VS} \sigma^{2}$$

$$m_{\omega}^{2} = \lambda_{VS} \sigma^{2} = 782 \,\text{MeV} \quad (\text{Boguta})$$

19/23

Free Energy (2): with $\sigma \omega$ Coupling

Smooth Chage of σ Value / Only One Local Minima \rightarrow Stability of Normal Vacuum

Equation of State (1): $M_{\sigma} = 600 \text{ MeV}$

Ohnishi and Naito, Hyp2003, J-Lab, Oct. 14-18, 2003

Equation of State (2): $M_{\sigma} = 800 \text{ MeV}$

Summary

- An SU(3) chiral sigma model with baryons is presented.
 - ***** Two types of transformation, B(1) and B(2) (Christos)
 - * Two types of Lowest order BBM coupling (Christos / Papazoglou et. al.)
 - * Explicit breaking term (Strange quark mass) -> Octet Baryon Mass
 - * Meson Lagrangian : Standard

Positive and Negative parity baryons are necessarily couple in constructing the lowest order chirally invariant Lagrangian having D as well as F coupling.

This model is applied to symmetric nuclear matter.

- * Coupling of $\sigma\omega$: Dyn. generation of vector meson mass (Boguta)
- ***** BV coupling: Repulsive NN interaction
- * **EOS** = **Too Stiff** ! \rightarrow One problem in SU(2) model is not solved yet !

Problems and Future Directions

* How can we make EOS softer ?

"Classical" Interaction BMBM Loop (Gledenning / Prakash-Ainsworth) Higher order terms (Sahu-AO) Dilatation Field (Papazoglou et. al.) Vector Realization (Sasaki-Harada) Non-Linear Realization

* How does the model predict Hyperon Potentials in Dense Matter ?

* Behavior of Negative Parity Baryons in Nuclear Matter

★ F/D Ratio in Pseudoscalar BB coupling = 1.6 !

(\leftarrow emprically 0.5–0.7)

* Perturbative contribution to condensate in baryon and meson sectors.

Equation of State (2): $M_{c} = 750 MeV$

Ohnishi and Naito, Hyp2003, J-Lab, Oct. 14-18, 2003

Equation of State (4): $M_{\sigma} = 900 \text{ MeV}$

Ohnishi and Naito, Hyp2003, J-Lab, Oct. 14-18, 2003

			Transf.	Rept., (L,R)
	Quarks g	LIGR	L_{q_L}, R_{q_R}	(3, 1), (1, 3)
	Mesons $M = \lambda$	$_{\alpha}(\bar{q}_{R}\lambda_{\alpha}q_{L})$	LMR^{\dagger}	(3, 3*)
	Baryons Ψ	L^{1}, Ψ^{1}_{R} L	$\langle \Psi^{1}_{L}L^{\dagger},R\Psi^{1}_{R}R^{\dagger}$	(8, 1), (1,8)
	Q	$L^2, \Psi_R^2 = L$	${\cal D}_L^2 R^{\dagger}, R \Phi_R^2 L^{\dagger}$	$(3, 3^{*}), (3^{*}, 3)$
	$\Psi_{L}^{1}(8, 1)$	$\Psi^1_R(1,8)$	$\Psi^2_L(3,3^4)$	$\Psi^2_R(3^*,3)$
$\bar{\Psi}^1_L(8,1)$			0	$\operatorname{Tr}\left[\overline{\Psi}_{L}^{1}M\Psi_{R}^{2}\right]$
$\bar{\Psi}^1_{\mathcal{R}}(1,8)$	—	—	${ m Tr}\left[ar{\Psi}^{f 1}_{\cal R}M^{\dagger}\Psi ight]$	2] 0
$\bar{\Psi}_{L}^{2}(3^{*},3)$	0	$T_{T} \left[\bar{\Psi}_{L}^{2} M \Psi_{R}^{1} \right]$	_	Det' $[\overline{\Psi}_L^2, M^{\dagger}, \Psi_R^2]$
$\Psi^2_R(3,3^*)$	$\operatorname{Tr}\left[\Psi_{R}^{2}M^{\dagger}\Psi_{L}^{1} ight]$	0	$\operatorname{Det}^{*}[arPsi_{R}^{2},M,1]$	Ψ_{L}^{2} —

$$\begin{split} B^1_{lk} &= \mathcal{N}^{-3} \bigl(q^T_{a,i} C \gamma_5 q_{b,j} \bigr) \, q_{c,l} \epsilon_{abc} \epsilon_{ijk} , \qquad B^2_{lk} = \mathcal{N}^{-3} \bigl(q^T_{a,i} C q_{b,j} \bigr) \, q_{c,l} \epsilon_{abc} \epsilon_{ijk} , \\ \Psi^1 &= \left(B^1 + \gamma_5 B^2 \right) / \sqrt{2} \quad : \quad \Psi^1_L \to L \Psi^1_L L^{\dagger} , \quad \Psi^1_R \to R \Psi^1_R R^{\dagger} , \\ \Psi^2 &= \left(B^1 - \gamma_5 B^2 \right) / \sqrt{2} \quad : \quad \Psi^2_L \to L \Psi^2_L R^{\dagger} , \quad \Psi^2_R \to R \Psi^2_R L^{\dagger} , \end{split}$$

$$d'_{abc} \equiv \frac{1}{4} \epsilon_{ijk} \epsilon_{lmn} \lambda^a_{il} \lambda^b_{jm} \lambda^c_{kn}$$

= $d_{abc} - \frac{\sqrt{6}}{2} \left[\delta_{a0} \delta_{bc} + \delta_{b0} \delta_{ca} + \delta_{c0} \delta_{ab} - 3 \delta_{a0} \delta_{b0} \delta_{c0} \right]$

Meson Mass Spectrum

Isoscalar Vector Meson w

Dynamical generation of
$$\omega$$
 mass: $\boldsymbol{\sigma}\omega$ Coupling
 $m_{\omega}^{2} = \lambda_{VS}\sigma^{2}$ 782 MeV
Coupling to Baryon: Repulsive BB interaction
 $g_{BV_{1}} \left\{ \operatorname{tr} \left[\overline{\Psi}_{L}^{1} l_{\mu} \gamma^{\mu} \Psi_{L}^{1} \right] + \operatorname{tr} \left[\overline{\Psi}_{R}^{1} r_{\mu} \gamma^{\mu} \Psi_{R}^{1} \right] \right\}$
 $+ g_{BV_{2}} \left\{ \operatorname{tr} \left[\overline{\Psi}_{L}^{2} l_{\mu} \gamma^{\mu} \Psi_{L}^{2} \right] + \operatorname{tr} \left[\overline{\Psi}_{R}^{2} r_{\mu} \gamma^{\mu} \Psi_{R}^{2} \right] \right\}$
 $\lambda \omega_{0} \sigma^{2} + \frac{g_{BV_{1}} \cos^{2} \theta_{N} + g_{BV_{2}} \sin^{2} \theta_{N}}{2} \left(\langle p^{\dagger} p \rangle_{F} + \langle n^{\dagger} n \rangle_{F} \right)$
 $= 0$
 $g_{BV} \equiv g_{BV_{1}} \cos^{2} \theta_{N} + g_{BV_{2}} \sin^{2} \theta_{N}$: Free Parameter !

Ohnishi and Naito, Hyp2003, J-Lab, Oct. 14-18, 2003

OB

Strangeness Enhancement: Rescattering, Potential, or Phase Transition ?

Strangeness is Enhanced Sharply at Einc = 10 ~ 40 GeV/A ! NA49 (nucl-ex/0205002)

JHF Energy: ~ Maximum K/π ratio

Ohnishi and Naito, Hyp2003, J-Lab, Oct. 14-18, 2005

Thermal Evolution from AGS to SPS Energies

* AGS (11 A GeV), JHF (25 A GeV)

Smooth Evolution in (ρ, Τ)
 ρ_{max}>2γρ₀

* SPS (200 A GeV), RHIC

Sudden Jump in (ρ, Τ)
ρ_{max} < 2 γ ρ₀

(JAM Calc., Y. Nara, FRONP99, 8/2-4, 1999 at JAERI)

Hadron Formation Time

It takes τ 1 fm for hadrons to be formed (and thus to interact) → Pre-Hadronic Interactions are necessary at SPS & RHIC → Hot & Dense Hadronic Matter would be formed at AGS & JHF Omishi and Patho, Hyp2003, J-Lao, Oct. 14-10, 2003