Nuclear EOS in Chiral sigma Model

A. Ohnishi and K. Naito

- Introduction
- Chiral sigma models
	- Chiral symmetry
	- Φ ⁴ Theory
	- NJL model
	- Boguta Scenario
- Soft Nuclear EOS in Chiral sigma Model
	- ω N Form Factor
	- ω^4 Term
	- Short range qq interaction effects
- Summary

Division of Physics
Graduate School of Science **Hokkaido University** http://phys.sci.hokudai.ac.jp/

A. Ohnishi, Colloquium, 2004/10/26

Introduction

- Nuclear EOS
	- Important in Various Nuclear/Astrophysics Contexts
	- Experiments:
		- → Heavy-Ion Collisions
		- → Precise Measurement of Nuclear Radii
		- ➔ Giant Monopole Resonance
	- Theory
		- → Ab Initio Calculation
		- \rightarrow G-matrix/Effective Interaction Approach
		- ➔ Mean Field approximation
		- → Transport Theory
	- How to Determine EOS far from Normal Nuclear Matter
		- \rightarrow High ρ , Yp (=Z/A) far from 0.5
	- We Need Models
		- → Based on Well-Defined Physics Motivation
		- ➔ With Small Number of Parameters to be Extapolated
		- → Simple Enough to be Applied in Various Contexts

Hadronic Matter Phase Diagram

A. Ohnishi, Colloquium, 2004/10/26

Division of Physics
Graduate School of Science **Hokkaido University** http://phys.sci.hokudai.ac.jp

Chiral Symmetry

- Good (approximate) Symmetry in QCD
	- In Flavor SU(2), only the small current quark mass term breaks chiral sym.
	- Should persist also in the hadronic world
	- Explains the small mass of pions, as Nambu-Goldstone particle of the chiral symmetry, and many other low energy hadronic properties.
- Schematic model: Linear σ model
	- Wine bottle shape of the effective potential
		- \rightarrow Spontaneous breaking of χ symmetry
	- $-$ Expectation Value of σ → Nucleon Mass

$$
L = \frac{1}{2} \Big(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \partial^{\mu} \pi \Big) - \frac{\lambda}{4} \Big(\sigma^{2} + \pi^{2} \Big)^{2} + \frac{\mu^{2}}{2} \Big(\sigma^{2} + \pi^{2} \Big) + c \sigma
$$

+ $\overline{N} i \partial_{\mu} \gamma^{\mu} N - g_{\sigma} \overline{N} \Big(\sigma + i \pi \tau \gamma_{5} \Big) N$

Chiral Linear σ Model: Energy Surface

$$
m_{\sigma}^{2} = \frac{\partial^{2} \varepsilon}{\partial \sigma^{2}}|_{vac} \text{ (Large)}, \quad m_{\pi}^{2} = \frac{\partial^{2} \varepsilon}{\partial \pi^{2}}|_{vac} \text{ (Small)}
$$

A. Ohnishi, Colloquium, 2004/10/26

Division of Physics
Graduate School of Science Hokkaido University http://phys.sci.hokudai.ac.jp

Chiral Linear σ Model at Fintite ρ_B (I)

- Serious problem:
	- Sudden chiral phase transition at relatively low baryon density. (Below ρ_0 if σ mass = 600 MeV) \rightarrow Why ?

A. Ohnishi, Colloquium, 2004/10/26

Division of Physics Graduate School of Hokkaido University http://phys.sci.hokudai.ăc.jp

Chiral Linear σ Model at Fintite ρ_B (II)

 \bullet "Vacuum " condition = Energy Minimum State

$$
V = V_{\sigma} + E_{N} = \frac{\lambda}{4} \left(\sigma^{2} + \pi^{2} \right)^{2} - \frac{\mu^{2}}{2} \left(\sigma^{2} + \pi^{2} \right) - c \sigma
$$

$$
+ \int \frac{\gamma d^{3} p}{\left(2 \pi \right)^{3}} \sqrt{p^{2} + \left(g_{\sigma} \sigma \right)^{2}}
$$

$$
\rightarrow \quad \frac{\partial V}{\partial \sigma} = \frac{\partial V_{\sigma}}{\partial \sigma} + g_{\sigma} \rho_s = 0
$$

– Large Nucleon Energy Gain for small $\langle \sigma \rangle$ due to mass decrease.

A. Ohnishi, Colloquium, 2004/10/26

Divicion o kaido Universitv

Chiral Linear σ Model at Fintite ρ_B (III)

• We cannot avoid this sudden change even if we intr oduce ω meson-Nucleon coupling (indep. on $\langle \sigma \rangle$) → Why do RMF models succeed ? → How about NJL model ?

A. Ohnishi, Colloquium, 2004/10/26

Division of Graduate School Hokkaido University

Other Effective Models of σ Meson

• Other Effective Models – Relativistic Mean Field models \rightarrow σ ω model, TM1, ... DO NOT have χ symmetry – Nambu-Jona-Lasino model \rightarrow has steeper increase at small $\langle \sigma \rangle$, then it is a little more stable than Φ⁴ model. However, it is still unstable below ρ_0 .

Boguta 's Scenario (I)

J. Boguta, PLB120,34/PLB128,19

- To avoid the sudden transition to χ restored phas e, it is necessary to include " stabilization pote ntial"at finite $\rho_{\, \sf B}$ which grows as $\langle\,\sigma\,\rangle$ increase s.
- Boguta proposed to include $\sigma \omega$ coupling

$$
L_{\omega\sigma} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} C_{\sigma\omega} \sigma^2 \omega^2 - g_{\omega} \overline{N} \gamma_{\mu} \omega^{\mu} N
$$

$$
\omega = g_{\omega} \rho_B / C_{\sigma\omega} \sigma^2 \longrightarrow V_{\sigma\omega} = \frac{g_{\omega}^2 \rho_B^2}{2 C_{\sigma\omega} \sigma^2}
$$

 \rightarrow Leads to large repulsion at around $\langle \sigma \rangle$ = 0

A. Ohnishi, Colloquium, 2004/10/26

Division of Physics Graduate School of Hokkaido University

Boguta ' s Scenario (III) $---$ Stiff EOS $---$

- \bullet $\sigma \omega$ coupling acts as the repulsive potential.
- \bullet σ down at medium ρ_B enhances repulsion.

A. Ohnishi, Colloquium, 2004/10/26

Division of Physics Graduate School of Hokkaido University http://phys.sci.hokudai.ac.jp

Solution of "Soft" Chiral Model

- There are many proposals, but as far as we understand, there is no simple satisfactory model yet. – RMF-TM1
	- \rightarrow No χ sym., V_{acuum} is not the usual vac.
	- $\rightarrow \omega^4$ term ... does not couple to σ (No stabilization)
	- Sahu-Ohnishi 2000
		- $\rightarrow \sigma^6$, σ^8 terms, Coef. are negative.
	- NJL
		- \rightarrow phase transition at $\rho_B \langle \rho_0, \rho_1 \rangle$ it gives too stiff EOS with $\sigma \omega$ coupling.
	- SU(3) chiral linear σ model at finite $ρ_B$.
		- → Naito-AO: EOS is still stiff also in SU(3)
	- Dilatation Field
		- ➔ Requires to include unobserved particle
	- Vacuum polarization due to Nucleon (Anti-N) Loop
		- \rightarrow V(σ) is made from quark loops. We should evaluate quark loop modification first.
	- Vacuum polarization due to π loops. \rightarrow maybe

Phenomenological Approach: Form Factor

- Origin of Stiff EOS in Boguta' s Scenario – Linear rize of Nucleon Vector Potential \rightarrow Uv(N) = g_ωω, ω=g_ωρ_B/m_ω ². – Vector potential should be suppressed at high E (Sahu, Cassing, Mosel, Ohnishi, 2000) \rightarrow It should be suppressed also at high ρ R.
- Introducing Form Factor

$$
L_{\omega N} = -g_{\omega} \overline{N} \gamma_{\mu} \omega^{\mu} N
$$

 $-\partial_\omega P = -g_\omega \overline{N} y_\mu \omega^\mu N F(\omega)$, $F(\omega) =$ 1 $1+\omega/\omega_{cut}$

- Energy density will have linear (not quadratic) dependence on ρ _B.
- "Backward" shift of χ cond. may be avoided.

A. Ohnishi, Colloquium, 2004/10/26

EOS with ωN Form Factor (Φ⁴+Boguta+FF+ ω ⁴)

- Intoducing ω N form factor clearly soften EOS
- Furthermore with ω 4 term, it becomes softer than TM1 or SO-2000 EOS.

– How about the behavior at around ρ_0 ?

A. Ohnishi, Colloquium, 2004/10/26

Division o kkaido Universitv

Effective Potential $(\Phi^4+Boguta+F.F.+ \omega^4)$

- \bullet ω N form factor \rightarrow Repulsive pot. linear in ρ R.
- ω^4 term \rightarrow Suppresses divergence at $\sigma \approx 0$
	- Vacuum can be unstable when it is too strong.

A. Ohnishi, Colloquium, 2004/10/26

Division of P. Graduate School o Hokkaido University

EOS with ω N Form Factor(NJL+Boguta+FF+ ω^4)

- Steeper rize of V_{σ} (NJL) at $\sigma \approx 0$
	- $-$ a little more stable than Φ^4 model.
	- We can make softer EOS based on V_{σ} (NJL).

A. Ohnishi, Colloquium, 2004/10/26

Division of Graduate School Hokkaido University

Effective Potential (NJL+Boguta+F.F.+ ω ⁴)

• Smoother change to x restored state

A. Ohnishi, Colloquium, 2004/10/26

Division of Pl Graduate School o Hokkaido University

Further Consideration: Short Range Int.

- Nucleon mass is fully made of σ ? \rightarrow NO !
	- Current quark mass: $m_q \approx 5.5$ MeV \rightarrow very small
	- Short range qq interaction: One Gluon Exchange (OGE) ➔ Responsible for NΔ mass splitting (≈ 300 MeV)

$$
M_{B} = M_{0} + \sum_{i} \left(M_{i} + \frac{k}{M_{i}} \right) + \sum_{ij} \frac{\alpha \sigma_{i} \cdot \sigma_{j}}{M_{i} M_{j}}
$$

➔ String, Const. Quark Mass (σ), K.E. of Const. Q uarks, OGE – Nucleaon Mass would be less than the sum of Const. Q uark Mass

$$
M_{N} = \Delta M + g_{\sigma} \sigma \ (\Delta M < 0)
$$

A. Ohnishi, Colloquium, 2004/10/26

Nuclear EOS in the extended model

- Negative M₀ allows us to increase g_{σ} . → Attractive potential can be large.
- We can make very "Soft" EOS by considering – Boguta 's $\sigma\,\omega$ coupling, $\omega\,$ N form factor, $\omega^{\,4}$ term, and Short range qq interaction effects,

A. Ohnishi, Colloquium, 2004/10/26

Division of P Graduate School ('okkaido University

Lagrangian and Parameters

• Lagrangian

$$
L = L_{\sigma} + \overline{N} \Big(\gamma^{\mu} \Big(\dot{\mathbf{I}} \, \partial_{\mu} - \omega_{\mu} \mathbf{F}(\omega) \Big) - M_0 - g_{\sigma} \Big(\sigma + \dot{\mathbf{I}} \, \tau \, \tau \, \gamma_5 \Big) \Big) N
$$

$$
- \frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu} + \frac{m_{\omega}^2}{2 \mathbf{f}_{\pi}^2} \sigma^2 \omega^2 + \frac{d_{\omega}}{4} \Big(\omega_{\mu} \omega^{\mu} \Big)^2
$$

• Parameters – With NJL σ Lagrangian $\rightarrow \omega_{\text{cut}} = 142 \text{ MeV}, \text{ M}_0 = -200 \text{ MeV}, \text{ d}_{\omega} = 20, \text{ g}_{\omega} = 11.38$ \rightarrow ρ_0 = 0.145 fm⁻³(Fit), E/A(ρ_0)=-16.3 MeV (Fit) \rightarrow K = 303 MeV $-$ With $Φ⁴$ Lagrangian $\rightarrow \omega_{\text{cut}} = 118 \text{ MeV}, M_0 = -200 \text{ MeV}, d_{\omega} = 25, g_{\omega} = 14.2$ \rightarrow m_{σ} = 600 MeV \rightarrow ρ_0 = 0.145 fm⁻³(Fit), E/A(ρ_0)=-16.4 MeV (Fit) \rightarrow K = 210 MeV

A. Ohnishi, Colloquium, 2004/10/26

A. Ohnishi, Colloquium, 2004/10/26

Division of Physics
Graduate School of Science Hokkaido University
http://phys.sci.hokudai.ac.jp

Comparison of Scalar and Vector Pot. with RMF-TM1

• Obtained Lagrangian gives similar behavior of Nucleon Scalar and Vector Potentials to RMF-TM1 – To be verified in Finite Nuclei / Neutron Stars / Supernovae !

A. Ohnishi, Colloquium, 2004/10/26

Division of P Graduate School Hokkaido University

Summary

- Problems of Nuclear EOS in Chiral Linear σ Models are overviewed.
- Difficulty lies in the dilemma between
	- $-$ Vacuum stability: Smooth reduction of χ cond. upto at le ast ρ_0
	- Reduction of Vector potential: Boguta's $\sigma\,\omega$ coupling giv es too much repulsion.
- We have considered following ingredients.
	- σ Lagrangian dependence (Φ^4 , NJL, S0-2000, ...)
	- $-$ Boguta's $\sigma \omega$ coupling
	- ω N coupling with form factor
	- ω^4 term, used in RMF-TM1 Lagrangian
	- Short range qq interaction effects (nucleon bare mass)
- By choosing parameters appropriately, we can construct chiral linear σ model giving soft EOS, and the conseq uent nucleon scalar and vector potential seems to match those in RMF-TM1, which is phenomenologically v ery successful model.

Time-up

- References: To be shown later
- Future works: You can guess
- Acknowledgements: First to Naito-san, and other me mbers of this lab., and Hatsuda-san.
- NJL explanation; Sorry. Wait for the next time.
- **●**

Division of okkaido University