Nuclear EOS in Chiral sigma Model

A. Ohnishi and K. Naito

- Introduction
- Chiral sigma models
 - Chiral symmetry
 - Φ^4 Theory
 - NJL model
 - Boguta Scenario
- Soft Nuclear EOS in Chiral sigma Model
 - ωN Form Factor
 - ω^4 Term
 - Short range qq interaction effects
- Summary

Division of Physics Graduate School of Science Hokkaido University http://phys.sci.hokudai.ac.jp/

Introduction

- Nuclear EOS
 - Important in Various Nuclear/Astrophysics Contexts
 - Experiments:
 - → Heavy-Ion Collisions
 - → Precise Measurement of Nuclear Radii
 - → Giant Monopole Resonance

- Theory

- → Ab Initio Calculation
- → G-matrix/Effective Interaction Approach
- → Mean Field_approximation
- → Transport Theory
- How to Determine EOS far from Normal Nuclear Matter

→ High ρ , Yp (=Z/A) far from 0.5

- We Need Models
 - → Based on Well-Defined Physics Motivation
 - → With Small Number of Parameters to be Extapolated
 - → Simple Enough to be Applied in Various Contexts

Hadronic Matter Phase Diagram

A. Ohnishi, Colloquium, 2004/10/26

Chiral Symmetry

- Good (approximate) Symmetry in QCD
 - In Flavor SU(2), only the small current quark mass term breaks chiral sym.
 - Should persist also in the hadronic world
 - Explains the small mass of pions, as Nambu-Goldstone particle of the chiral symmetry, and many other low energy hadronic properties.
- Schematic model: Linear σ model
 - Wine bottle shape of the effective potential
 - \rightarrow Spontaneous breaking of χ symmetry
 - Expectation Value of σ
 → Nucleon Mass

$$L = \frac{1}{2} \Big(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \partial^{\mu} \pi \Big) - \frac{\lambda}{4} \Big(\sigma^{2} + \pi^{2} \Big)^{2} + \frac{\mu^{2}}{2} \Big(\sigma^{2} + \pi^{2} \Big) + c \sigma \\ + \overline{N} i \partial_{\mu} \gamma^{\mu} N - g_{\sigma} \overline{N} \Big(\sigma + i \pi \tau \gamma_{5} \Big) N$$

Chiral Linear σ Model: Energy Surface

$$m_{\sigma}^{2} = \frac{\partial^{2} \varepsilon}{\partial \sigma^{2}}|_{vac} \text{ (Large), } m_{\pi}^{2} = \frac{\partial^{2} \varepsilon}{\partial \pi^{2}}|_{vac} \text{ (Small)}$$

A. Ohnishi, Colloquium, 2004/10/26

Chiral Linear σ Model at Fintite ρ_B (1)

- Serious problem:
 - Sudden chiral phase transition at relatively low baryon density. (Below ρ₀ if σ mass = 600 MeV)
 → Why ?

A. Ohnishi, Colloquium, 2004/10/26

Chiral Linear σ Model at Fintite $\rho_{\rm B}$ (II)

• "Vacuum" condition = Energy Minimum State

$$V = V_{\sigma} + E_{N} = \frac{\lambda}{4} (\sigma^{2} + \pi^{2})^{2} - \frac{\mu^{2}}{2} (\sigma^{2} + \pi^{2}) - c \sigma$$
$$+ \int \frac{\gamma d^{3} p}{(2\pi)^{3}} \sqrt{p^{2} + (g_{\sigma} \sigma)^{2}}$$

$$\rightarrow \frac{\partial V}{\partial \sigma} = \frac{\partial V_{\sigma}}{\partial \sigma} + g_{\sigma} \rho_{s} = 0$$

- Large Nucleon Energy Gain for small $<\!\sigma\!>$ due to mass decrease.

A. Ohnishi, Colloquium, 2004/10/26

Chiral Linear σ Model at Fintite $\rho_{\rm B}$ (III)

We cannot avoid this sudden change even if we introduce ω meson-Nucleon coupling (indep. on <σ>)
 → Why do RMF models succeed ?
 → How about NJL model ?

A. Ohnishi, Colloquium, 2004/10/26

Other Effective Models of σ Meson

Other Effective Models

 Relativistic Mean Field models
 → σ ω model, TM1, ... D0 NOT have χ symmetry
 Nambu-Jona-Lasino model
 → has steeper increase at small < σ >, then it is a little more stable than Φ⁴ model. However, it is still unstable below ρ₀.

Boguta's Scenario (I)

J. Boguta, PLB120, 34/PLB128, 19

- To avoid the sudden transition to χ restored phas e, it is necessary to include "stabilization pote ntial" at finite $\rho_{\rm B}$ which grows as $\langle \sigma \rangle$ increase s.
- Boguta proposed to include $\sigma\,\omega$ coupling

$$L_{\omega\sigma} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} C_{\sigma\omega} \sigma^2 \omega^2 - g_{\omega} \overline{N} \gamma_{\mu} \omega^{\mu} N$$
$$\omega = g_{\omega} \rho_B / C_{\sigma\omega} \sigma^2 \quad \rightarrow \quad V_{\sigma\omega} = \frac{g_{\omega}^2 \rho_B^2}{2 C_{\sigma\omega} \sigma^2}$$

→ Leads to large repulsion at around $<\sigma>$ ≈ 0

Division of Physics Graduate School of Science Hokkaido University http://phys.sci.hokudai.ac.jp

A. Ohnishi, Colloquium, 2004/10/26

A. Ohnishi, Colloquium, 2004/10/26

Boguta's Scenario (III) ---- Stiff EOS ----

- $\sigma \omega$ coupling acts as the repulsive potential.
- σ down at medium $\rho_{\rm B}$ enhances repulsion.

A. Ohnishi, Colloquium, 2004/10/26

Solution of "Soft" Chiral Model

- There are many proposals, but as far as we understand, there is no simple satisfactory model yet.
 - RMF-TM1
 - $\rightarrow No \chi$ sym., _{Vacuum} is not the usual vac.
 - $\rightarrow \omega^4$ term ... does not couple to σ (No stabilization)
 - Sahu-Ohnishi 2000
 - $\rightarrow \sigma^{6}, \sigma^{8}$ terms, Coef. are negative.
 - NJL
 - → phase transition at $\rho_{\rm B} < \rho_{\rm 0}$, or it gives too stiff EOS with $\sigma \omega$ coupling.
 - SU(3) chiral linear σ model at finite $\rho_{\rm B}$.
 - → Naito-AO: EOS is still stiff also in SU(3)
 - Dilatation Field
 - → Requires to include unobserved particle
 - Vacuum polarization due to Nucleon (Anti-N) Loop
 - →V(σ) is made from quark loops. We should evaluate quark loop modification first.
 - Vacuum polarization due to π loops. \rightarrow maybe
- A. Ohnishi, Colloquium, 2004/10/26

Phenomenological Approach: Form Factor

- Origin of Stiff EOS in Boguta's Scenario

 Linear rize of Nucleon Vector Potential
 → Uv (N) = g_ωω, ω=g_ωρ_B/m_ω².
 Vector potential should be suppressed at high E
 - (Sahu, Cassing, Mosel, Ohnishi, 2000)
 - \rightarrow It should be suppressed also at high ρ_B .
- Introducing Form Factor

$$-\omega_{N} = -g_{\omega}\overline{N}\gamma_{\mu}\omega^{\mu}N$$

$$\rightarrow L_{\omega N} = -g_{\omega} \overline{N} \gamma_{\mu} \omega^{\mu} N F(\omega) , \quad F(\omega) = \frac{1}{1+\omega}$$

- Energy density will have linear (not quadratic) dependence on $\rho_{\rm B}$
- "Backward" shift of χ cond. may be avoided.

A. Ohnishi, Colloquium, 2004/10/26

 $/\omega_{cut}$

EOS with ωN Form Factor (Φ^4 +Boguta+FF+ ω^4)

- Intoducing ωN form factor clearly soften EOS
- Furthermore with $\omega 4$ term, it becomes softer than TM1 or SO-2000 EOS.

- How about the behavior at around ρ_0 ?

A. Ohnishi, Colloquium, 2004/10/26

Effective Potential (Φ^4 +Boguta+F.F.+ ω^4)

- ωN form factor \rightarrow Repulsive pot. linear in ρ_B .
- ω^4 term \rightarrow Suppresses divergence at $\sigma \approx 0$
 - Vacuum can be unstable when it is too strong.

A. Ohnishi, Colloquium, 2004/10/26

EOS with ωN Form Factor(NJL+Boguta+FF+ ω^4)

- Steeper rize of V_{σ} (NJL) at $\sigma \approx 0$
 - a little more stable than Φ^4 model.
 - We can make softer EOS based on V $_{\sigma}$ (NJL).

A. Ohnishi, Colloquium, 2004/10/26

Effective Potential (NJL+Boguta+F.F. + ω^4)

• Smoother change to χ restored state

A. Ohnishi, Colloquium, 2004/10/26

Further Consideration: Short Range Int.

- Nucleon mass is fully made of σ ? \rightarrow NO !
 - Current quark mass: $m_q \approx 5.5 \text{ MeV} \rightarrow \text{very small}$
 - Short range qq interaction: One Gluon Exchange (OGE)
 → Responsible for N∆ mass splitting (≈ 300 MeV)

$$M_{B} = M_{0} + \sum_{i} \left(M_{i} + \frac{k}{M_{i}} \right) + \sum_{ij} \frac{\alpha \sigma_{i} \cdot \sigma_{j}}{M_{i} M_{j}}$$

→ String, Const. Quark Mass (σ), K.E. of Const. Q uarks, OGE
 - Nucleaon Mass would be less than the sum of Const. Q uark Mass

$$M_N = \Delta M + g_\sigma \sigma (\Delta M < 0)$$

A. Ohnishi, Colloquium, 2004/10/26

Nuclear EOS in the extended model

- Negative M₀ allows us to increase g_σ.
 → Attractive potential can be large.
- We can make very "Soft" EOS by considering

 Boguta's σω coupling, ωN form factor, ω⁴ term,

and Short range qq interaction effects,

A. Ohnishi, Colloquium, 2004/10/26

Lagrangian and Parameters

• Lagrangian

$$L = L_{\sigma} + \overline{N} \left(\gamma^{\mu} (i \partial_{\mu} - \omega_{\mu} F(\omega)) - M_{0} - g_{\sigma} (\sigma + i \tau \pi \gamma_{5}) \right) N$$
$$- \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{m_{\omega}^{2}}{2 f_{\pi}^{2}} \sigma^{2} \omega^{2} + \frac{d_{\omega}}{4} \left(\omega_{\mu} \omega^{\mu} \right)^{2}$$

• Parameters - With NJL σ Lagrangian $\Rightarrow \omega_{cut} = 142 \text{ MeV}, M_0 = -200 \text{ MeV}, d_\omega = 20, g_\omega = 11.38$ $\Rightarrow \rho_0 = 0.145 \text{ fm}^{-3}(\text{Fit}), E/A(\rho_0) = -16.3 \text{ MeV} (\text{Fit})$ $\Rightarrow K = 303 \text{ MeV}$ - With Φ^4 Lagrangian $\Rightarrow \omega_{cut} = 118 \text{ MeV}, M_0 = -200 \text{ MeV}, d_\omega = 25, g_\omega = 14.2$ $\Rightarrow m_{\sigma} = 600 \text{ MeV}$ $\Rightarrow \rho_0 = 0.145 \text{ fm}^{-3}(\text{Fit}), E/A(\rho_0) = -16.4 \text{ MeV} (\text{Fit})$ $\Rightarrow K = 210 \text{ MeV}$

A. Ohnishi, Colloquium, 2004/10/26

A. Ohnishi, Colloquium, 2004/10/26

Comparison of Scalar and Vector Pot. with RMF-TM1

- Obtained Lagrangian gives similar behavior of Nucleon Scalar and Vector Potentials to RMF-TM1 - To be verified in Finite Nuclei / Neutron Stars /
 - Supernovae !

A. Ohnishi, Colloquium, 2004/10/26

Summary

- Problems of Nuclear EOS in Chiral Linear σ Models are overviewed.
- Difficulty lies in the dilemma between
 - Vacuum stability: Smooth reduction of χ cond. upto at le ast ρ_0 .
 - Reduction of Vector potential: Boguta's $\sigma\,\omega$ coupling giv es too much repulsion.
- We have considered following ingredients.
 - σ Lagrangian dependence (Φ^4 , NJL, SO-2000, ...)
 - Boguta's $\sigma \omega$ coupling
 - ωN coupling with form factor
 - ω^4 term, used in RMF-TM1 Lagrangian
 - Short range qq interaction effects (nucleon bare mass)
- By choosing parameters appropriately, we can construct chiral linear σ model giving soft EOS, and the conseq uent nucleon scalar and vector potential seems to match those in RMF-TM1, which is phenomenologically v ery successful model.

Time-up

- References: To be shown later
- Future works: You can guess
- Acknowledgements: First to Naito-san, and other me mbers of this lab., and Hatsuda-san.
- NJL explanation; Sorry. Wait for the next time.
-

