Strong Coupling Limit Lattice QCD Approach to Nuclear Matter and Finite Nuclei Akira Ohnishi (Hokkaido Univ.) in collaboration with N. Kawamoto, K. Miura, T. Ohnuma, K. Tsubakihara, K. Naito

Hadronic Matter Phase Diagram

Phase Diagramin Strong Coupling Limit Lattice QCDwith $N_c=3$

Strong Coupling Limit Lattice QCD (1)

- **Full Lattice QCD at large \mu and low T is not possible**
 - ★ Fermion Det. becomes complex \rightarrow Monte-Carlo breaks down
 - * Small $\mu \rightarrow$ Re-Weighting / Expansion in μ

• Strong Coupling Limit: $g \to \infty$

- * Semi-analytic analyses become possible.
- * At $\mu=0$, Chiral Restoration at high T is explained.

• Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211 * At $\mu \neq 0$ and N_c = 2, Phase diagram is drawn.

 \rightarrow Baryon = Boson with $N_c = 2$

- Nishida, Fukushima, Hatsuda, PRept 394(2004),281.
- * At $\mu \neq 0$ and N_c = 3, U₀ integral is done only approximately.
 - Azcoiti, Di. Carlo, Galante, Laliena, hep-lat/0307019.

Strong Coupling Limit Lattice QCD (2)

• Chiral Restoration at $\mu=0$.

 Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211

Phase Diagram with Nc=2

 Nishida, Fukushima, Hatsuda, PRept 394(2004),281.

Donshu Workshop, March 21-23, 2005 @ KEK

Strong Coupling Limit Lattice QCD (3)

- Proper Understanding of QCD phase diagram with N_c = 3 is not achieved yet.
 - ★ Nc=2: Diquark = Color Singlet Boson = Baryon
 → No Fermi Energy for Baryons ?
 - ★ Nc=3: 1/d Expansion also for U₀ term. → Conversion would be bad.

Azcoiti, Di. Carlo, Galante, Laliena, hep-lat/0307019.

This work:

- * $N_c=3$: Baryon Integral is required
- ★ EXACT integral of U_0 term
- Diquark condensate is tentatively ignored.

Lattice Action in SCL-LQCD (1)

Lattice Action with staggered Fermions

In the Strong Coupling Limit (g → ∞), we can ignore SG, and semi-analytic calculation becomes possible.

Lattice Action in SCL-LQCD (2) Integral over U_i (1/d expansion)

* Expand exp(- S_F), and perform U_j integral.

$$\begin{split} \int \mathcal{D}[U] U_{ij} U_{kl}^{\dagger} &= \frac{1}{N_c} \delta_{il} \delta_{jk} \ , \quad \int \mathcal{D}[U] U_{ij} U_{kl} U_{mn} = \frac{1}{N_c!} \varepsilon_{ikm} \varepsilon_{jln} \\ S_F^{(j)}[\chi^a, \bar{\chi}^a] &= -\frac{1}{2} (M, V_M M) - (\bar{B}, V_B B) \\ M(x) &= \delta_{ab} \bar{\chi}^a(x) \chi^b(x) \ , \\ B(x) &= \frac{1}{6} \varepsilon_{abc} \chi^a(x) \chi^b(x) \chi^c(x) \ , \quad \bar{B}(x) = \frac{1}{N_c!} \varepsilon_{abc} \bar{\chi}^c(x) \bar{\chi}^b(x) \bar{\chi}^a(x) \end{split}$$

Bosonization (Auxiliary Field)

$$\begin{split} S_F^{(q)} &= (\bar{b}, \tilde{V}_B^{-1} b) + L^3 \beta \left(\sigma^2 / 2\alpha^2 + |\Phi|^2 / 4\gamma^2 \right) \\ &+ (\bar{\chi} \sigma \chi) + \frac{1}{12\gamma^2} \left[(\bar{\chi}^a, \phi_a^{\dagger} b) + (\bar{b} \phi_a, \chi^a) \right] + \frac{1}{2} \varepsilon_{cab} \left[(\phi_c^{\dagger}, \chi^a \chi^b) - (\bar{\chi}^a \bar{\chi}^b, \phi_c) \right] + S_F^{(U0)} \end{split}$$

- * Action of quark (χ), gluon (U₀), sigma (σ), Diquark (φ), *baryon (b*).
- ★ Bi-Linear in Grassmann variables (χ and b)
 → Pfaffian Integral, Two -log (det) Terms in Effective Action

Lattice Action in SCL-LQCD (3)

Fermion Integral, Matsubara Freq. Sum, and U₀ Integral

→ Effective Action at Zero Diquark Condensate

$$\begin{split} F_{\text{eff}} &= \frac{\sigma^2}{2\alpha^2} + F_{\text{eff}}^{(q)} + F_{\text{eff}}^{(b)} \\ F_{\text{eff}}^{(q)} &= -T \log \left(C_{\sigma}^3 - \frac{1}{6} C_{\sigma} C_{\mu}^2 - \frac{1}{3} C_{\sigma} + \frac{3}{4} C_{\mu}^3 - \frac{1}{2} C_{\mu} \right) \\ C_{\sigma} &= \cosh \left[\beta \sinh^{-1} \sigma \right] \ , \quad C_{\mu} = \cosh \beta \mu \\ F_{\text{eff}}^{(b)} &\simeq -a_0^{(b)} f^{(b)}(cA) \ , \quad f^{(b)}(x) = \frac{3}{2x^3} \int_0^x k^2 dk \log(1+k^2) \end{split}$$

Two Types of Fermion Log(Det) Terms !

Phase Diagram

■ Minimum of Effective Action → Phase Diagram

* Kawamoto, Miura, AO, Ohnuma, in preparation.

Change from 2nd order to 1st order at Finite µ

Free Energy Surface

RMF with σ Self Energy from Strong Coupling Limit Lattice QCD

RMF with Chiral Symmetry (1)

Good (approximate) Symmetry in QCD

- * Only the current quark mass terms break chiral sym.
- * Spontaneously Broken, and $\langle \bar{q} q \rangle$ determines hadron masses

Schematic model: Linear σ model

$$L = \frac{1}{2} \Big(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \partial^{\mu} \pi \Big) - \frac{\lambda}{4} \Big(\sigma^{2} + \pi^{2} \Big)^{2} + \frac{\mu^{2}}{2} \Big(\sigma^{2} + \pi^{2} \Big) + c \sigma$$
$$+ \overline{N} i \partial_{\mu} \gamma^{\mu} N - g_{\sigma} \overline{N} \Big(\sigma + i \pi \tau \gamma_{5} \Big) N$$

Problem: χ Sym. is restored at a very small density.

- * Smaller Nucleon Mass Energies are preferred
- * σω Coupling stabilizes normal vacuum, but gives *Too Stiff EOS*
 - J. Boguta, PLB120,34/PLB128,19.
 - Ogawa et al. PTP 111 (2004)75.

RMF with Chiral Symmetry (2)

Donshu Workshop, March 21-23, 2005 @ KEK

RMF with σ Self Energy from SCL-LQCD σ Self Energy from simple Strong Coupling Limit LQCD

$$S \rightarrow -\frac{1}{2}(M, V_M M) \quad (1/d \text{ expansion})$$

$$\rightarrow b\sigma^2 + (\bar{\chi} \ \sigma \chi) \quad (\text{auxiliary field})$$

$$\rightarrow b\sigma^2 - a \log \sigma^2 \quad (\text{Fermion Integral})$$

RMF Lagrangian

 \star σ is shifted by f_{π} , and small explicit χ breaking term is added.

$$\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \gamma^{\mu} V_{\mu} - M + g_{\sigma} \sigma \right) \psi + \mathcal{L}_{\sigma}^{(0)} + \mathcal{L}_{\omega}^{(0)} + \mathcal{L}_{\rho}^{(0)}$$
$$-U_{\sigma} + \frac{\lambda}{4} (\omega_{\mu} \omega^{\mu})^{2}$$

$$U_{\sigma} = -af\left(\frac{\sigma}{f_{\pi}}\right) , \quad f(x) = 2\log(1+x) - 2x + x^2 , \quad a = \frac{f_{\pi}^2}{4}(m_{\sigma}^2 - m_{\pi}^2)$$

Nuclear Matter and Finite Nuclei

Nuclear Matter

* By tuning λ, g_{ωN}, m_σ,
 Soft EOS can be obtained in Chirally Symmetric RMF

Finite Nuclei

 * By tuning gρN, Global behavior of Nuclear B.E. is reproduced, except for j-j closed nuclei. (C, Si, Ni)

Summary

- While full Lattice QCD is not (yet?) applicable to study low T and high ρ matter, we can obtain qualitative feature of the Phase Diagram with the Strong Coupling Limit of LQCD with Nc=3.
 - With Nc = 3, Two Fermion Integrals would give different results from Nc=2 case.
 - * 2nd order \rightarrow 1st order as μ increases. (Chiral Limit)
- While many chiral symmetric RMFs give too stiff EOS, log σ type self energy seems to give softer EOS.
 - * log σ term prevents the normal vacuum to collapse.
 - * It is also applicable to Hypernuclei (cf. Tsubakihara @ JPS)
- Interplay between

quark nuclear physics and nucleon nuclear physics will be very beneficial !

Collaborators

- T. Ohnuma (M1)
- N. Kawamoto (Hokkaido U.)
- K. Miura (M2)
- K. Tsubakihara (M1)
- K. Naito

Thank You !

QCD Phase Diagram from Lattice QCDZero Chem. Pot. Finite Chem. Pot.

 JLQCD Collab. (S. Aoki et al.), Nucl. Phys. Proc. Suppl. 73 (1999), 459. ★ Fodor & Katz, JHEP 0203 (2002), 014.

Zero Chem. Pot. : Cross Over Finite Chem. Pot.: Critical End Point

Lattice Action in SCL-LQCD (2') Auxiliary Fields

 $\exp\left[(\bar{B}, V_B B)\right] = \det V_B \int \mathcal{D}[\bar{b}, b] \exp\left[-(\bar{b}, V_B^{-1} b) + (\bar{b}, B) + (\bar{B}, b)\right]$ $\exp\left(\bar{b}B + \bar{B}b\right)$ $= \int \mathcal{D}[\phi_a, \phi_a^{\dagger}] \exp\left\{-\frac{1}{4\gamma^2}\phi_a^{\dagger}\phi_a - \frac{1}{2\gamma}(\phi_a^{\dagger}D_a + D_a^{\dagger}\phi_a) + \frac{1}{36\gamma^2}M\bar{b}b - 2\gamma^2M^2\right\}$ $D_a = \gamma \varepsilon_{abc} \chi^b \chi^c + \frac{1}{6\gamma} \bar{\chi}^a b , \quad D_a^{\dagger} = -\gamma \varepsilon_{abc} \bar{\chi}^b \bar{\chi}^c + \frac{1}{6\gamma} \bar{b} \chi^a$ $\exp\left|\frac{1}{36\gamma^2}M\bar{b}b\right| = \int \mathcal{D}[\omega] \exp\left|-\frac{1}{2a_{\perp}^2}\omega^2 - \frac{\omega}{a_{\perp}}(\alpha M + g_{\omega}\bar{b}b) - \frac{1}{2}\alpha^2 M^2\right|$ $\exp\left[\frac{1}{2}(M,\widetilde{V}_MM) - \frac{\alpha}{a_{\omega}}(\omega,M)\right] = \int \mathcal{D}[\sigma] \exp\left[-\frac{1}{2}(\sigma',\widetilde{V}_M^{-1}\sigma') - (\sigma,M)\right]$ $\sigma'(x) = \sigma(x) - \alpha \omega(x) / g_{\omega} .$

Single A Hypernucleus

May 18, 2005

JPS-04 spring at Noda, Tokyo University of Science

Slide 21