Strong Coupling Limit Lattice QCD Approach to Nuclear Matter and Finite Nuclei Akira Ohnishi (Hokkaido Univ.) in collaboration with N. Kawamoto, K. Miura, T. Ohnuma, K. Tsubakihara, K. Naito

Hadronic Matter Phase Diagram

Phase Diagram in Strong Coupling Limit Latiie CD with Nⁱ =3

Strong Coupling Limit Lattice QCD (1)

- *Full Lattice QCD at large μ and low T is not possible*
	- \star Fermion Det. becomes complex \to Monte-Carlo breaks down
	- \star Small $\mu \rightarrow$ Re-Weighting / Expansion in μ

Strong Coupling Limit: g → ∞

 \star Semi-analytic analyses become possible.

 \star At $\mu=0$, Chiral Restoration at high *T* is explained.

Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211 At $\mu \neq 0$ and $N_c = 2$, Phase diagram is drawn.

 \rightarrow *Baryon* = *Boson with* N_c = 2

Nishida, Fukushima, Hatsuda, PRept 394(2004),281.

At $\mu \neq 0$ and $N_c = 3$, U_0 integral is done only approximately.

Azcoiti, Di. Carlo, Galante, Laliena, hep-lat/0307019.

Strong Coupling Limit Lattice QCD (2)

Chiral Restoration at μ=0.

Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211

Phase Diagram with Nc=2

* Nishida, Fukushima, Hatsuda, PRept 394(2004),281.

Donshu Workshop, March 21-23, 2005 @ KEK

Strong Coupling Limit Lattice QCD (3)

- *Proper Understanding of QCD phase diagram with N^c = 3 is not achieved yet.*
	- \star Nc=2: Diquark = Color Singlet Boson = Baryon \rightarrow No Fermi Energy for Baryons ?
	- \star Nc=3: 1/d Expansion also for U₀ term. \rightarrow Conversion would be bad.

Azcoiti, Di. Carlo, Galante, Laliena, hep-lat/0307019.

This work:

- \star N_c=3: Baryon Integral is required
- \star EXACT integral of U₀ term
- * Diquark condensate is tentatively ignored.

Lattice Action in SCL-LQCD (1)

Lattice Action with staggered Fermions

$$
U_{\mathbf{v}}^{+} \left\{ \begin{array}{lll} U_{\mathbf{v}}^{+} & S[U, \chi, \bar{\chi}] = S_{G}[U] + S_{F}[U, \chi, \bar{\chi}] , \\ U_{\mathbf{v}}^{+} & V_{\mathbf{v}}^{+} & \sum_{G=[U]}\sum_{g^{2}}\sum_{x,\mu,\nu}\left\{1 - \frac{1}{N_{c}}\text{ReTr}U_{\mu\nu}(x)\right\} \right\} \mathbf{g} \rightarrow \infty \\ U_{\mu}^{+} & V_{\mu\nu}(x) = U_{\nu}^{\dagger}(x)U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}(x+\hat{\mu})U_{\mu}(x) , \\ S_{F}[U, \chi, \bar{\chi}] = S_{F}^{(m)}[\chi, \bar{\chi}] + S_{F}^{(j)}[U_{j}, \chi, \bar{\chi}] + S_{F}^{(U0)}[U_{0}, \chi, \bar{\chi}] , \\ S_{F}^{(m)}[\chi, \bar{\chi}] = m \sum_{x} \bar{\chi}^{a}(x)\chi^{a}(x) , \\ S_{F}^{(j)}[U_{j}, \chi, \bar{\chi}] = \frac{1}{2} \sum_{x} \sum_{j=1}^{d} \eta_{j}(x) \left\{ \bar{\chi}(x)U_{j}(x)\chi(-\hat{\chi}) - \bar{\chi}(x+\hat{\chi})U_{j}^{\dagger}(x)\chi(x) \right\} , \\ S_{F}^{(U0)}[U_{0}, \chi, \bar{\chi}] = \frac{1}{2} \sum_{x} \eta_{0}(x) \left\{ \bar{\chi}(x)U_{g}(x)\chi(x+\hat{0}) - \bar{\chi}(x+\hat{0})U_{0}^{\dagger}(x)\chi(x) \right\} . \end{array}
$$

In the Strong Coupling Limit (g → ∞), we can ignore SG, and semi-analytic calculation becomes possible.

Lattice Action in SCL-LQCD (2) Integral over U^j (1/d expansion)

Expand $exp(-S_F)$, and perform U_j integral.

$$
\int \mathcal{D}[U]U_{ij}U_{kl}^{\dagger} = \frac{1}{N_c} \delta_{il} \delta_{jk} , \quad \int \mathcal{D}[U]U_{ij}U_{kl}U_{mn} = \frac{1}{N_c!} \varepsilon_{ikm} \varepsilon_{jln}
$$
\n
$$
S_F^{(j)}[\chi^a, \bar{\chi}^a] = -\frac{1}{2}(M, V_M M) - (\bar{B}, V_B B)
$$
\n
$$
M(x) = \delta_{ab} \bar{\chi}^a(x) \chi^b(x) ,
$$
\n
$$
B(x) = \frac{1}{6} \varepsilon_{abc} \chi^a(x) \chi^b(x) \chi^c(x) , \quad \bar{B}(x) = \frac{1}{N_c!} \varepsilon_{abc} \bar{\chi}^c(x) \bar{\chi}^b(x) \bar{\chi}^a(x)
$$

- *Bosonization (Auxiliary Field)* $S_F^{(q)} = (\bar{b}, \tilde{V}_B^{-1}b) + L^3 \beta (\sigma^2/2\alpha^2 + |\Phi|^2/4\gamma^2)$ $+\left(\bar{\chi}\sigma\chi\right)+\frac{1}{12\gamma^2}\left[\left(\bar{\chi}^a,\phi_a^\dagger b\right)+\left(\bar{b}\phi_a,\chi^a\right)\right]+\frac{1}{2}\varepsilon_{cab}\left[\left(\phi_c^\dagger,\chi^a\chi^b\right)-\left(\bar{\chi}^a\bar{\chi}^b,\phi_c\right)\right]+S_F^{(U0)}$
	- \star Action of quark (x), gluon (U₀), sigma (σ), Diquark (φ), *baryon (b)*.
	- \star Bi-Linear in Grassmann variables (χ and b) \rightarrow Pfaffian Integral, Two -log (det) Terms in Effective Action

Lattice Action in SCL-LQCD (3)

Fermion Integral, Matsubara Freq. Sum, and U⁰ Integral

→ Effective Action at Zero Diquark Condensate

$$
F_{\text{eff}} = \frac{\sigma^2}{2\alpha^2} + F_{\text{eff}}^{(q)} + F_{\text{eff}}^{(b)}
$$

\n
$$
F_{\text{eff}}^{(q)} = -T \log \left(C_{\sigma}^3 - \frac{1}{6} C_{\sigma} C_{\mu}^2 - \frac{1}{3} C_{\sigma} + \frac{3}{4} C_{\mu}^3 - \frac{1}{2} C_{\mu} \right)
$$

\n
$$
C_{\sigma} = \cosh \left[\beta \sinh^{-1} \sigma \right] , \quad C_{\mu} = \cosh \beta \mu
$$

\n
$$
F_{\text{eff}}^{(b)} \simeq -a_0^{(b)} f^{(b)}(c\Lambda) , \quad f^{(b)}(x) = \frac{3}{2x^3} \int_0^x k^2 dk \log(1 + k^2)
$$

Two Types of Fermion Log(Det) Terms !

Phase Diagram

Minimum of Effective Action → Phase Diagram

 \star Kawamoto, Miura, AO, Ohnuma, in preparation.

Change from 2nd order to 1st order at Finite μ

Free Energy Surface

RMF with σ Self Energy from Strong Coupling Limit Latiie CD

RMF with Chiral Symmetry (1)

Good (approximate) Symmetry in QCD

- \star Only the current quark mass terms break chiral sym.
- Spontaneously Broken, and $\langle \bar{\boldsymbol{q}} \, \boldsymbol{q} \rangle$ determines hadron masses
- *Schematic model: Linear σ model*

$$
L = \frac{1}{2} \Big(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \partial^{\mu} \pi \Big) - \frac{\lambda}{4} \Big(\sigma^{2} + \pi^{2} \Big)^{2} + \frac{\mu^{2}}{2} \Big(\sigma^{2} + \pi^{2} \Big) + c \sigma
$$

+ $\overline{N} i \partial_{\mu} \gamma^{\mu} N - g_{\sigma} \overline{N} \Big(\sigma + i \pi \tau \gamma_{5} \Big) N$

Problem: χ Sym. is restored at a very small density.

- * Smaller Nucleon Mass Energies are preferred
- σω Coupling stabilizes normal vacuum, but gives *Too Stiff EOS*
	- **J. Boguta, PLB120,34/PLB128,19.**
	- **Ogawa et al. PTP 111 (2004)75**.

RMF with Chiral Symmetry (2)

Donshu Workshop, March 21-23, 2005 @ KEK

RMF with σ Self Energy from SCL-LQCD σ Self Energy from simple Strong Coupling Limit LQCD

$$
S \rightarrow -\frac{1}{2}(M, V_M M) \qquad (1/d \text{ expansion})
$$

\n
$$
\rightarrow b\sigma^2 + (\bar{\chi} \sigma \chi) \qquad \text{(auxiliary field)}
$$

\n
$$
\rightarrow b\sigma^2 - a\log \sigma^2 \qquad \text{(Fermion Integral)}
$$

RMF Lagrangian

 \star σ is shifted by f_{π} , and small explicit χ breaking term is added.

$$
\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \gamma^{\mu} V_{\mu} - M + g_{\sigma} \sigma \right) \psi + \mathcal{L}_{\sigma}^{(0)} + \mathcal{L}_{\omega}^{(0)} + \mathcal{L}_{\rho}^{(0)}
$$

$$
-U_{\sigma} + \frac{\lambda}{4} (\omega_{\mu} \omega^{\mu})^{2}
$$

$$
U_{\sigma} = -af\left(\frac{\sigma}{f_{\pi}}\right) , \quad f(x) = 2\log(1+x) - 2x + x^2 , \quad a = \frac{f_{\pi}^2}{4}(m_{\sigma}^2 - m_{\pi}^2)
$$

Nuclear Matter and Finite Nuclei

Nuclear Matter

 \star By tuning λ , $g_{\omega N}$, m_{σ} , *Soft EOS* can be obtained in Chirally Symmetric RMF

Finite Nuclei

 \star By tuning gρN, Global behavior of Nuclear B.E. is reproduced, except for j-j closed nuclei. (C, Si, Ni)

Summary

- *While full Lattice QCD is not (yet?) applicable to study low T and high ρ matter, we can obtain qualitative feature of the Phase Diagram with the Strong Coupling Limit of LQCD with Nc=3.*
	- \star With Nc = 3, Two Fermion Integrals would give different results from Nc=2 case.
	- \star 2nd order \to 1st order as μ increases. (Chiral Limit)
- *While many chiral symmetric RMFs give too stiff EOS, log σ type self energy seems to give softer EOS.*
	- \star log σ term prevents the normal vacuum to collapse.
	- \star It is also applicable to Hypernuclei (cf. Tsubakihara ω JPS)
- *Interplay between*

quark nuclear physics and nucleon nuclear physics will be very beneficial !

Collaborators

- *T. Ohnuma (M1)*
- *N. Kawamoto (Hokkaido U.)*
- *K. Miura (M2)*
- *K. Tsubakihara (M1)*
- *K. Naito*

Thank You !

QCD Phase Diagram from Lattice QCD Zero Chem. Pot. Finite Chem. Pot.

★ JLQCD Collab. (S. Aoki et al.), Nucl. Phys. Proc. Suppl. 73 (1999), 459.

Fodor & Katz, JHEP 0203 (2002), 014.

 Zero Chem. Pot. : Cross Over Finite Chem. Pot.: Critical End Point

Lattice Action in SCL-LQCD (2') Auxiliary Fields

 $\exp\left[(\bar{B},V_B B) \right] = \det V_B \int \mathcal{D}[\bar{b},b] \exp\left[-(\bar{b},V_B^{-1}b) + (\bar{b},B) + (\bar{B},b) \right]$ $\exp(\bar{b}B + \bar{B}b)$ $=\int {\cal D}[\phi_a,\phi_a^{\dagger}] \exp\left\{-\frac{1}{4\gamma^2}\phi_a^{\dagger}\phi_a-\frac{1}{2\gamma}(\phi_a^{\dagger}D_a+D_a^{\dagger}\phi_a)+\frac{1}{36\gamma^2}M\bar{b}b-2\gamma^2M^2\right\}$ $D_a = \gamma \varepsilon_{abc} \chi^b \chi^c + \frac{1}{6\gamma} \bar{\chi}^a b \; , \quad D_a^{\dagger} = - \gamma \varepsilon_{abc} \bar{\chi}^b \bar{\chi}^c + \frac{1}{6\gamma} \bar{b} \chi^a$ $\exp\left[\frac{1}{36\gamma^2}M\bar{b}b\right] = \int \mathcal{D}[\omega]\exp\left[-\frac{1}{2g_{\omega}^2}\omega^2 - \frac{\omega}{g_{\omega}}(\alpha M + g_{\omega}\bar{b}b) - \frac{1}{2}\alpha^2M^2\right]$ $\exp\left[\frac{1}{2}(M,\widetilde{V}_MM)-\frac{\alpha}{a}(\omega,M)\right]=\int\mathcal{D}[\sigma]\exp\left[-\frac{1}{2}(\sigma',\widetilde{V}_M^{-1}\sigma')-(\sigma,M)\right]$ $\sigma'(x) = \sigma(x) - \alpha \omega(x)/g_{\omega}.$

Single Λ Hypernucleus

May 18,2005 JPS-04 spring at Noda, Tokyo University of Science Slide 21