Strong Coupling Limit Lattice QCD Approach to Nuclear Matter

Akira Ohnishi (Hokkaido Univ.) in collaboration with N. Kawamoto, K. Miura, T. Ohnuma

Hadronic Matter Phase Diagram

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Phase Diagramin Strong Coupling Limit Lattice QCDwith $N_c=3$

Strong Coupling Limit Lattice QCD (1) Full Lattice QCD at large \mu and low T is not possible * Fermion Det. becomes complex \rightarrow Monte-Carlo breaks down * Small $\mu \rightarrow Re$ -Weighting / Expansion in μ Strong Coupling Limit: $g \to \infty$ * Semi-analytic analyses become possible. * At $\mu=0$, Chiral Restoration at high T is explained. Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211 * At $\mu \neq 0$ and $N_c = 2$, Phase diagram is drawn.

 \rightarrow Baryon = Boson with $N_c = 2$

Nishida, Fukushima, Hatsuda, PRept 394(2004),281.
 ★ At μ ≠ 0, T=0 and N_c = 3, U₀ integral is done only approximately.

Azcoiti, Di. Carlo, Galante, Laliena, hep-lat/0307019.

Strong Coupling Limit Lattice QCD (2)

• Chiral Restoration at $\mu=0$.

 Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211

Phase Diagram with Nc=2

 Nishida, Fukushima, Hatsuda, PRept 394(2004),281.

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Strong Coupling Limit Lattice QCD (3)

- Proper Understanding of QCD phase diagram with N_c = 3 is not achieved yet.
 - * Nc=2: Diquark = Color Singlet Boson = Baryon
 → No Fermi Energy for Baryons ?
 - * Nc=3: 1/d Expansion also for U_0 term. \rightarrow Conversion would be bad.
 - Azcoiti, Di. Carlo, Galante, Laliena, hep-lat/0307019.
- This work:
 - * $N_c=3$: Baryon Integral is required
 - * EXACT integral of U_0 term
 - * Diquark condensate is tentatively ignored.

Useful Techniques in Lattice QCD • Fermion determinant $\int DX D\overline{X} \exp(\overline{X}GX) = \det G$

Group Integral

$$\int \mathcal{D}[U]U_{ij}U_{kl}^{\dagger} = \frac{1}{N_c} \delta_{il} \delta_{jk} , \quad \int \mathcal{D}[U]U_{ij}U_{kl}U_{mn} = \frac{1}{N_c!} \varepsilon_{ikm} \varepsilon_{jln}$$

Polyakov Gauge and SU(3) Group Integral $U_0(x) = diag(\exp(i\theta_1), \exp(i\theta_2), \exp(i\theta_3)), \theta_1 + \theta_2 + \theta_3 = 0$

$$\int \mathcal{D}[U_0] = \prod_i \left[\int_{-\pi}^{\pi} \frac{d\theta_i}{2\pi} \right] \delta(\sum_j \theta_j) \Delta$$
$$\Delta = \prod_{i < j} \left| e^{i\theta_i} - e^{i\theta_j} \right|^2 = \prod_{i < j} 2 \left[1 - \cos(\theta_i - \theta_j) \right]$$

Bosonization, Mean Field Approximation,

Step 0: Lattice Action in SCL-LQCD

Lattice Action with staggered Fermions

$$\begin{split} & \begin{array}{c} & \begin{array}{c} & & & \\ \chi & & & \\ \chi & & \\ \chi$$

In the Strong Coupling Limit $(g \rightarrow \infty)$, we can ignore SG, and semi-analytic calculation becomes possible.

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Step 1: Integral over Uj: 1/d Expansion (1) Group Integral

$$\int \mathcal{D}[U]U_{ij}U_{kl}^{\dagger} = \frac{1}{N_c} \delta_{il} \delta_{jk} , \quad \int \mathcal{D}[U]U_{ij}U_{kl}U_{mn} = \frac{1}{N_c!} \varepsilon_{ikm} \varepsilon_{jln}$$

• Expand $exp(-S_F)$, and perform U_j integral.

$$\begin{split} I_{j} &\equiv \int \mathcal{D}[U_{j}(x)] \exp\left[\frac{-\eta_{j}(x)}{2} \left\{ \bar{\chi}(x)U_{j}(x)\chi(x+\hat{j}) - \bar{\chi}(x+\hat{j})U_{j}^{\dagger}(x)\chi(x) \right\} \right] \\ &= \int \mathcal{D}[U_{j}(x)] \left\{ 1 + \frac{1}{8} \left[\bar{\chi}(x)U_{j}(x)\chi(x+\hat{j}) - \bar{\chi}(x+\hat{j})U_{j}^{\dagger}(x)\chi(x) \right]^{2} \\ &+ \left(\frac{-\eta_{j}}{2}\right)^{N_{c}} \frac{1}{N_{c}!} \left[\bar{\chi}(x)U_{j}(x)\chi(x+\hat{j}) - \bar{\chi}(x+\hat{j})U_{j}^{\dagger}(x)\chi(x) \right]^{N_{c}} + \dots \right\} \\ &= 1 - \frac{1}{4N_{c}} \bar{\chi}^{a}(x)\chi^{b}(x_{j})\bar{\chi}^{b}(x_{j})\chi^{a}(x) \\ &+ \left(\frac{-\eta_{j}}{2}\right)^{N_{c}} \frac{1}{(N_{c}!)^{2}} \varepsilon_{ace} \varepsilon_{bdf} \left[\bar{\chi}^{a}(x)\chi^{b}(x_{j})\bar{\chi}^{c}(x)\chi^{d}(x_{j})\bar{\chi}^{e}(x)\chi^{f}(x_{j}) \\ &- \bar{\chi}^{a}(x_{j})\chi^{b}(x)\bar{\chi}^{c}(x_{j})\chi^{d}(x)\bar{\chi}^{e}(x_{j})\chi^{f}(x) \right] + \dots \\ &= \exp\left[\frac{1}{4N_{c}}M(x)M(x_{j}) + \left(\frac{-\eta_{j}}{2}\right)^{N_{c}} \left(\bar{B}(x) \ B(x_{j}) - \bar{B}(x_{j}) \ B(x) \right) + \dots \right] \end{split}$$

Step 1: Integral over Uj: 1/d Expansion (2) Action in Meson and Baryon Fields made of Quarks $S_F^{(j)}[\chi^a, \bar{\chi}^a] = -\frac{1}{2}(M, V_M M) - (\bar{B}, V_B B)$ $M(x) = \delta_{ab} \bar{\chi}^a(x) \chi^b(x) ,$ $B(x) = \frac{1}{6} \varepsilon_{abc} \chi^a(x) \chi^b(x) \chi^c(x) \ , \quad \bar{B}(x) = \frac{1}{N_{cl}} \varepsilon_{abc} \bar{\chi}^c(x) \bar{\chi}^b(x) \bar{\chi}^a(x)$ $V_M(x,y) = \frac{1}{4N_c} \sum_{i=1}^{3} \left(\delta_{y,x+\hat{j}} + \delta_{y,x-\hat{j}} \right)$ $V_B(x,y) = \sum_{i=1}^{3} \left(\frac{-\eta_j(x)}{2}\right)^{N_c} \left(\delta_{y,x+\hat{j}} - \delta_{y,x-\hat{j}}\right)$

In SCL, spatial gluon components can be integrated out !

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Step 2: Auxiliary Fields and MFA (1) ■ Pfaffian Integral: Bi-Linear in Grassmann variables (χ and b) → Determinant

$$G \equiv \int \mathcal{D}[\chi, \bar{\chi}] e^{\bar{\mathbf{X}} \mathbf{G}^{-1} \mathbf{X}} = \prod_{\mathbf{x}} \left\{ \det \left[\mathbf{G}_{ab}^{-1}(m, n) \right] \right\}^{1/2} \qquad \mathbf{X} = (\chi, \bar{\chi})$$

Reduce the action to Bi-Linear form in $\chi \rightarrow Auxiliary$ Fields

* Baryon Field $\exp\left[(\bar{B}, V_B B)\right] = \det V_B \int \mathcal{D}[\bar{b}, b] \exp\left[-(\bar{b}, V_B^{-1} b) + (\bar{b}, B) + (\bar{B}, b)\right]$

* Di-quark Field

$$D_{a} = \gamma \varepsilon_{abc} \chi^{b} \chi^{c} + \frac{1}{6\gamma} \bar{\chi}^{a} b , \quad D_{a}^{\dagger} = -\gamma \varepsilon_{abc} \bar{\chi}^{b} \bar{\chi}^{c} + \frac{1}{6\gamma} \bar{b} \chi^{a}$$
$$D_{a}^{\dagger} D_{a} = 2\gamma^{2} M^{2} + \bar{B} b + \bar{b} B - \frac{1}{36\gamma^{2}} M \bar{b} b$$
$$\int \mathcal{D}[\phi_{a}, \phi_{a}^{\dagger}] \exp\left\{-(\phi_{a}^{\dagger}/2\gamma + D_{a}^{\dagger})(\phi_{a}/2\gamma + D_{a}) + D_{a}^{\dagger} D_{a}\right\} = \exp\left\{D_{a}^{\dagger} D_{a}\right\}$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Step 2: Auxiliary Fields and MFA (2) Auxiliary Fields (cont.)

* Baryon Potenital (note:
$$(\boldsymbol{b}\,\boldsymbol{b})^2 = \mathbf{0}$$
)

$$\exp\left[\frac{1}{36\gamma^2}M\bar{b}b\right] = \int \mathcal{D}[\omega] \exp\left[-\frac{1}{2g_{\omega}^2}\omega^2 - \frac{\omega}{g_{\omega}}(\alpha M + g_{\omega}\bar{b}b) - \frac{1}{2}\alpha^2 M^2\right]$$

* Chiral Condensate σ

$$\exp\left[\frac{1}{2}(M,\widetilde{V}_{M}M) - \frac{\alpha}{g_{\omega}}(\omega,M)\right]$$
$$= \int \mathcal{D}[\sigma] \exp\left[-\frac{1}{2}(\sigma',\widetilde{V}_{M}^{-1}\sigma') + \frac{1}{2}(M,\widetilde{V}_{M}M) - \frac{\alpha}{g_{\omega}}(\omega,M)\right]$$
$$= \int \mathcal{D}[\sigma] \exp\left[-\frac{1}{2}(\sigma - \alpha\omega/g_{\omega},\widetilde{V}_{M}^{-1}(\sigma - \alpha\omega/g_{\omega})) - (\sigma,M)\right]$$
$$\sigma'(x) = \sigma(x) - \alpha\omega(x)/g_{\omega} + \widetilde{V}_{M}(x,y)M(y) .$$

Step 2: Auxiliary Fields and MFA (3, Summary) Action with Auxiliary Fields

Bi-Linear in γ and $b \rightarrow$ Determinant Technique * ★ Local in position → Small Matrix Size * Contains coupling term of χ and $b \rightarrow$ Problematic ... $S_{F}[U_{0}, \chi^{a}, \bar{\chi}^{a}, b, \bar{b}, \phi_{a}, \phi^{\dagger}_{a}, \omega, \sigma] = S_{F}^{(q)} + S_{F}^{(X)}$ $S_{F}^{(X)} = (\bar{b}, \tilde{V}_{B}^{-1}b) + (\phi^{\dagger}, \phi)/4\gamma^{2} + \frac{1}{2}\omega^{2}/g_{\omega}^{2} + \frac{1}{2}(\sigma - \alpha\omega/g_{\omega}, \tilde{V}_{M}^{-1}(\sigma - \alpha\omega/g_{\omega}))$ $S_{E}^{(q)} = S_{E}^{(m)} + S_{E}^{(jq)} + S_{E}^{(U0)}$ $= (\sigma + m_0, M) + (\phi_a^{\dagger}, D_a)/2\gamma + (D_a^{\dagger}, \phi_a)/2\gamma + S_F^{(U0)}$ $= (\bar{\chi}^{a}, (\sigma + m_{0})\chi^{a}) + (\bar{\chi}^{a}, \phi^{\dagger}_{a}b/12\gamma^{2}) + (\bar{b}\phi_{a}/12\gamma^{2}, \chi^{a})$ $+\frac{1}{2}\varepsilon_{cab}\left[\left(\phi_{c}^{\dagger},\chi^{a}\chi^{b}\right)-\left(\bar{\chi}^{a}\bar{\chi}^{b},\phi_{c}\right)\right]$ $+\frac{1}{2}\sum \left\{\bar{\chi}(x)e^{\mu}U_{0}(x)\chi(x+\hat{0})-\bar{\chi}(x+\hat{0})U_{0}^{\dagger}(x)e^{-\mu}\chi(x)\right\}$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Step 3: Fermion Determinant (1-1)

Fourier Transformation

- * Anti-Periodic Boundary Condition is Satisfied
- * "Derivative" term becomes sin(kt)

$$\begin{split} \psi(x) &= \frac{1}{\sqrt{\beta}} \sum_{m=1}^{\beta} e^{ik_m \tau} \psi_m(\mathbf{x}) , \quad \bar{\psi}(x) = \frac{1}{\sqrt{\beta}} \sum_{m=1}^{\beta} e^{-ik_m \tau} \bar{\psi}_m(\mathbf{x}) \\ S_F^{(q)} &= \sum_{\mathbf{x}} \sum_{m=1}^{\beta} \left[B_m^a \bar{\chi}_m^a \chi_m^a + \bar{C}_m^a \chi_m^a + \bar{\chi}_m^a C_m^a + \frac{1}{2} \varepsilon_{abc} (\phi_c^{\dagger} \chi_m^a \chi_{m'}^b - \bar{\chi}_m^a \bar{\chi}_{m'}^b \phi_c) \right] \\ C_m^a(\mathbf{x}) &= \frac{1}{12\gamma^2} \phi_a^{\dagger}(\mathbf{x}) b_m(\mathbf{x}) , \quad \bar{C}_m^a(\mathbf{x}) = \frac{1}{12\gamma^2} \bar{b}_m(\mathbf{x}) \phi_a(\mathbf{x}) \\ B_m^a(\mathbf{x}) &= m_0 + \sigma(\mathbf{x}) + i \sin(k_m + \theta^a(\mathbf{x})/\beta - i\mu) \end{split}$$

Step 3: Fermion Determinant (1-2)Pfaffian Form

* G: Size= β (Number of Time-Step) x 3 (color) x 2 (χ , χ bar)

$$\begin{split} S_F^{(q)} &= \frac{1}{2} \sum_{\mathbf{x},m,n,a,b} \left[(\bar{\chi}_m^a, \chi_m^a) \begin{pmatrix} B_m^a \delta_{ab} \delta_{mn} & -\varepsilon_{cab} \phi_c \delta_{m,\beta-n+1} \\ \varepsilon_{cab} \phi_c^\dagger \delta_{m,\beta-n+1} & -B_m^a \delta_{ab} \delta_{mn} \end{pmatrix} \begin{pmatrix} \chi_n^b \\ \bar{\chi}_n^b \end{pmatrix} \\ &+ (\bar{\chi}_m^a, \chi_m^a) \begin{pmatrix} C_m^a \\ -\bar{C}_m^a \end{pmatrix} + (\bar{C}_m^a, -C_m^a) \begin{pmatrix} \chi_m^a \\ \bar{\chi}_m^a \end{pmatrix} \right] \\ &= \frac{1}{2} \sum_{\mathbf{x},m,n,a,b} \left[\bar{\mathbf{X}}_m^a(\mathbf{x}) \mathbf{G}_{ab}^{-1}(m, n; \theta(\mathbf{x})) \mathbf{X}_n^b(\mathbf{x}) + (\bar{\mathbf{X}}_m^a(\mathbf{x}) \mathbf{Y}_m^a(\mathbf{x}) + \bar{\mathbf{Y}}_m^a(\mathbf{x}) \mathbf{X}_m^a(\mathbf{x})) \right] \\ &= \sum_{\mathbf{x},m,n,a,b} \left[\frac{1}{2} \left(\bar{\mathbf{X}} + \bar{\mathbf{Y}} \mathbf{G} \right)_m^a \mathbf{G}_{ab}^{-1}(m, n) \left(\mathbf{X} + \mathbf{G} \mathbf{Y} \right)_n^b - \frac{1}{2} \bar{\mathbf{Y}}_m^a \mathbf{G}_{ab}(m, n) \mathbf{Y}_n^b \right] \end{split}$$

$$m' = \beta - m + 1$$

Step 3: Fermion Determinant (1-3) Determinant of Big Matrix G * Block diagonal $\rightarrow 6 \times 6$ Matrix (g) $\int \mathcal{D}[\chi,\bar{\chi}] \exp\left[-S_F^{(q)}\right] = \prod \prod \left[-\det\left[\mathbf{g}_{ab}(m)\right] \right]^{1/2}$ $g(\mathbf{x}, k_m) \equiv -\det \left[\mathbf{g}_{ab}(m; \theta^a(\mathbf{x})) \right]$ $= (B_1|\phi_1|^2 + B_2|\phi_2|^2 + B_3|\phi_3|^2)(B_1'|\phi_1|^2 + B_2'|\phi_2|^2 + B_3'|\phi_3|^2)$ + $\sum B_a B'_a |\phi_a|^2 (B_b B'_c + B'_b B_c) + B_1 B_2 B_3 B'_1 B'_2 B'_3$ (a,b,c)=cyc.

★ Matsubara Frequency Sum → Total Matrix Determinant

$$G(\mathbf{x}) = \left[\prod_{j} \left(1 + \cos\beta z_j(\mathbf{x})\right)\right]^{1/2}$$

Step 3: Fermion Determinant (1-3b) Matsubara Sum Technique

* Using z (the solution of g(k)=0)

$$\log G(\mathbf{x}) = \log \left[\prod_{m=1}^{\beta} g(\mathbf{x}, k_m)\right] = \sum_{m} \log \left[\prod_{j=1}^{6} \left(\cos k_m - rY_j(\mathbf{x})\right)\right]^{1/2}$$
(2.21)

$$\frac{d\log G(\mathbf{x})}{dr} = \frac{1}{2} \sum_{m,j} \frac{-Y_j}{\cos k_m - rY_j}$$

$$= \frac{1}{2\Omega} \sum_j \left[\oint \frac{dz}{2\pi i} \frac{-Y_j}{\cos z - rY_j} \frac{-i\beta}{1 + e^{i\beta z}} - \sum_{z_j^r} \frac{-Y_j}{-\sin z_j^r} \frac{-i\beta}{1 + e^{i\beta z_j^r}} \right]$$

$$= \frac{i\beta}{2\Omega} \sum_{j,z_j^r} \frac{Y_j}{\sin z_j^r} \frac{1}{1 + \exp(i\beta z_j^r)} = \frac{-i\beta}{2\Omega} \sum_{j,z_j^r} \frac{dz_j^r}{dr} \frac{1}{1 + \exp(i\beta z_j^r)}$$

$$= \frac{d}{dr} \frac{1}{2\Omega} \sum_{j,z_j^r} \log\left(1 + \exp(-i\beta z_j^r)\right) \qquad (2.22)$$

$$\log G(\mathbf{x}) = \frac{1}{2\Omega} \sum_{j,z_j^r} \log\left(1 + \exp(-i\beta z_j)\right) + \text{const.} \qquad (2.23)$$

 $\log G(\mathbf{x}) = \frac{1}{2\Omega} \sum_{j, z_j} \log \left(1 + \exp(-i\beta z_j)\right) + \text{const.}$ (

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Step 3: Fermion Determinant (2-1)

Baryon Integral

$$\widetilde{V}_B^{-1}(x,y) = V_B^{-1}(x,y) + \omega \delta_{x,y}$$

$$\int \mathcal{D}[b,\bar{b}] \exp\left[-\sum_{m,n} \left(\bar{b}_m, \widetilde{V}_B^{-1} b_n\right)\right] \qquad V_B(x,y) = \sum_{j=1}^3 \left(\frac{-\eta_j(x)}{2}\right)^{N_c} \left(\delta_{y,x+\hat{j}} - \delta_{y,x-\hat{j}}\right)^{N_c} \left($$

* Different Spatial Points are connected \rightarrow Spatial Fourier Transf.

$$b_m(\mathbf{x}) = \frac{1}{\sqrt{L^3}} \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{x}} b_{m\mathbf{k}} , \quad \mathbf{k} = \frac{2\pi}{L} (k_1, k_2, k_3)$$

* Momentum Repr. of V_B :

$$\begin{aligned} V_B(m\mathbf{k}, n\mathbf{k}') &= \frac{-i}{4} \delta^{\beta}_{m,n} \sum_{j=1,2,3} \prod_{1 \le i < j} \delta^L_{k_i, k'_i} \prod_{l \ge j} \delta_{k_l, k'_l} \sin k_j \\ &= \frac{-i}{4} \delta^{\beta}_{m,n} \delta_{k_3, k'_3} \left[\delta_{k_1, k'_1} \delta_{k_2, k'_2} \sin k_1 \\ &+ \delta^L_{k_1, k'_1} \delta_{k_2, k'_2} \sin k_2 + \delta^L_{k_1, k'_1} \delta^L_{k_2, k'_2} \sin k_3 \right] , \\ \delta^{\beta}_{m,n} &= \delta_{m, n+\beta/2} + \delta_{m, n-\beta/2} , \quad \delta^L_{a, b} = \delta_{a, b+\pi} + \delta_{a, b-\pi} \end{aligned}$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Step 3: Fermion Determinant (2-2)

Baryon Matrix in Momentum Repr. and Determinant

$$\begin{split} &\sum_{m,n} \left(\bar{b}_m, \tilde{V}_B^{-1} b_n \right) \\ &= \sum_{k_1=1}^{L/2} \sum_{k_2=1}^{L/2} \sum_{k_3} \sum_{m=1}^{\beta/2} \left(\bar{b}_m \quad \bar{b}'_m \right) \begin{pmatrix} 0 & -\frac{i}{4} \mathbf{S}(\mathbf{k}) \\ -\frac{i}{4} \mathbf{S}(\mathbf{k}) & 0 \end{pmatrix} \begin{pmatrix} \mathbf{b}_m \\ \mathbf{b}'_m \end{pmatrix} \\ &\mathbf{S} = \begin{pmatrix} \sin k_1 & \sin k_2 & \sin k_3 & 0 \\ \sin k_2 & -\sin k_1 & 0 & \sin k_3 \\ \sin k_3 & 0 & -\sin k_1 & -\sin k_2 \\ 0 & \sin k_3 & -\sin k_2 & \sin k_1 \end{pmatrix} \\ &\mathbf{b}_m = (b_{m\mathbf{k}^{(1)}}, b_{m\mathbf{k}^{(2)}}, b_{m\mathbf{k}^{(3)}}, b_{m\mathbf{k}^{(4)}}) \\ &\mathbf{b}'_m = \begin{pmatrix} b_{m+\beta/2,\mathbf{k}^{(1)}}, b_{m+\beta/2,\mathbf{k}^{(2)}}, b_{m+\beta/2,\mathbf{k}^{(3)}}, b_{m+\beta/2,\mathbf{k}^{(4)}} \end{pmatrix} \\ &\mathbf{k}^{(1)} = (k_1, k_2, k_3), \quad \mathbf{k}^{(2)} = (k_1 + \pi, k_2, k_3), \\ &\mathbf{k}^{(3)} = (k_1 + \pi, k_2 + \pi, k_3), \quad \mathbf{k}^{(4)} = (k_1, k_2 + \pi, k_3), \end{split}$$

Step 3: Fermion Determinant (2-3) Effective Potential from Baryon Loop $\exp(-\beta L^3 F_{\text{eff}}^{(b)}) \equiv \text{Det}V_B \int \mathcal{D}[b,\bar{b}] \exp\left[-\sum_{n} \left(\bar{b}_m, \widetilde{V}_B^{-1} b_n\right)\right]$ $= \operatorname{Det} V_B \operatorname{Det} \left[V_B^{-1} + \omega \mathbf{1} \right] = \operatorname{Det} \left[1 + \omega V_B \right]$ $= \prod_{k_1=1}^{L/2} \prod_{k_2=1}^{L/2} \prod_{k_3=1}^{L} \prod_{m=1}^{\beta/2} \det \left[\begin{pmatrix} 1 & -i\omega S/4 \\ -i\omega S/4 & 1 \end{pmatrix} \right]$ L/2 L/2 L $\beta/2$ $= \prod_{L=1}^{L/2} \prod_{m=1}^{L/2} \prod_{m=1}^{L} \prod_{m=1}^{\beta/2} \left(1 + \omega^2 s^2 / 16\right)^4 = \prod_{m=1}^{L/2} \prod_{m=1}^{L/2} \prod_{m=1}^{L} \left(1 + \omega^2 s^2 / 16\right)^{2\beta}$ $k_1 = 1 k_2 = 1 k_3 = 1 m = 1$ $k_1 = 1$ $k_2 = 1$ $k_3 = 1$ $= \prod (1 + \omega^2 s^2 / 16)^{\beta/2}$ $F_{\rm eff}^{(b)} = -\frac{1}{2L^3} \sum_{l} \log \left| 1 + \frac{\omega^2 s^2}{16} \right|$ $\simeq -\frac{a_0^{(b)}}{2} \left(\frac{4\pi}{3}\Lambda^3\right)^{-1} \int_0^{\Lambda} 4\pi k^2 dk \log\left[1+c^2k^2\right]$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Step 4: Gluon Integral (1)

Link Variable in Polyakov gauge

 $U_0(x) = diag(\exp(i\theta_1), \exp(i\theta_2), \exp(i\theta_3)), \theta_1 + \theta_2 + \theta_3 = 0$

SU(3) Haar Measure

$$\int \mathcal{D}[U_0] = \prod_i \left[\int_{-\pi}^{\pi} \frac{d\theta_i}{2\pi} \right] \delta(\sum_j \theta_j) \Delta$$
$$\Delta = \prod_{i < j} \left| e^{i\theta_i} - e^{i\theta_j} \right|^2 = \prod_{i < j} 2 \left[1 - \cos(\theta_i - \theta_j) \right]$$

Step 4: Gluon Integral (2)

Quark Integral at φ=0 (without diquark condensate)

$$\beta z_i^{\pm} = \theta_i - i\beta\mu \pm i\beta\sinh^{-1}\widetilde{\sigma} , \quad \widetilde{\sigma} = m_0 + \sigma$$

$$\sinh^{-1} x = \log(\sqrt{1+x^2} + x)$$

$$G = \prod_{i} \left[(1 + \cos \beta z_{i}^{+})(1 + \cos \beta z_{i}^{-}) \right]^{1/2} = F_{1}F_{2}F_{3}$$

$$F_{i} = C_{\sigma} + C_{\mu} \cos \theta_{i} - iS_{\mu} \sin \theta_{i}$$

$$C_{\sigma} = \cosh \left[\beta \sinh^{-1} \widetilde{\sigma}\right]$$

$$C_{\mu} = \cosh \beta \mu , \quad S_{\mu} = \sinh \beta \mu$$

Gluon Integral

$$\int dU_0 G = C_\sigma^3 - \frac{1}{6} C_\sigma C_\mu^2 - \frac{1}{3} C_\sigma + \frac{3}{4} C_\mu^3 - \frac{1}{2} C_\mu$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Effective Potential at Zero Quark Condensate

• Fermion Integral, Matsubara Freq. Sum, and U_0 Integral \rightarrow Effective Action at Zero Diquark Condensate

$$\begin{split} F_{\text{eff}} &= \frac{\sigma^2}{2\alpha^2} + F_{\text{eff}}^{(q)} + F_{\text{eff}}^{(b)} \\ F_{\text{eff}}^{(q)} &= -T \log \left(C_{\sigma}^3 - \frac{1}{6} C_{\sigma} C_{\mu}^2 - \frac{1}{3} C_{\sigma} + \frac{3}{4} C_{\mu}^3 - \frac{1}{2} C_{\mu} \right) \\ C_{\sigma} &= \cosh \left[\beta \sinh^{-1} \sigma \right] \ , \quad C_{\mu} = \cosh \beta \mu \\ F_{\text{eff}}^{(b)} &\simeq -a_0^{(b)} f^{(b)}(cA) \ , \quad f^{(b)}(x) = \frac{3}{2x^3} \int_0^x k^2 dk \log(1+k^2) \end{split}$$

Two Types of Fermion Log(Det) Terms !

Phase Diagram

Minimum of Effective Action → *Phase Diagram* ★ Kawamoto, Miura, AO, Ohnuma, in preparation.

Change from 2nd order to 1st order at Finite μ

Free Energy Surface

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Treatment of Diquark Condensate (1)

Diquark Condensate with Nc=3

$$D_a = \gamma \varepsilon_{abc} \chi^b \chi^c + \frac{1}{6\gamma} \bar{\chi}^a b$$

* Have Color \rightarrow Expectation Value=0 \rightarrow Cannot be Order Par. Color Singlet Combination $v^2 = \phi_a^* \phi_a$

* Idea: Leave v^2 , and integrate other "angle" variables

$$Y = \frac{\gamma^2}{2}M^2 - \frac{1}{9\gamma^2}M\bar{b}b = D_a^{\dagger}D_a - (\bar{b}B + \bar{B}b)$$

$$e^{\bar{b}B+\bar{B}b} = \int \mathcal{D}[\phi_a, \phi_a^{\dagger}] e^{-\phi_a^{\dagger}\phi_a + \phi_a^{\dagger}D_a + D_a^{\dagger}\phi_a - Y}$$

$$\int \mathcal{D}[\phi_a, \phi_a^{\dagger}] \exp\left\{\phi_a^{\dagger} D_a + D_a^{\dagger} \phi_a\right\} = \int \mathcal{D}[v] \exp\left\{\frac{v^2}{3} D_a^{\dagger} D_a + \frac{v^4}{162} M^3 \bar{b}b\right\}$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Treatment of Diquark Condensate (2)

Self-Consistent Replacement of quark-baryon coupling

$$\begin{split} &\exp(\bar{b}B + \bar{B}b) \\ &\simeq \exp\left[-v^2 - Y + \frac{v^2}{3}\left(\bar{b}B + \bar{B}b + Y\right) + \frac{v^4}{162}M^3\bar{b}b\right] \\ &\simeq \exp\left[\frac{-v^2}{1 - v^2/3} + E(v)M^3\bar{b}b - Y\right] \\ &E(v) = \frac{v^4}{162(1 - v^2/3)} \end{split}$$

Reduction of $M^n \overline{b} b$ term

$$e^{EM^{3}\bar{b}b} = \int \mathcal{D}[\omega_{2}]e^{-\omega_{2}^{2}/2 - \omega_{2}(g_{2}M + EM^{2}\bar{b}b/g_{2}) - g_{2}M^{2}/2}$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Treatment of Diquark Condensate (3) Effective Potential with Chiral and Color Condensates $F_{\text{eff}}(v,\sigma,\omega_i) = F_X + F_b + F_a$ $F_X = \frac{1}{2}(a_\sigma \sigma'^2 + \omega_0^2 + \omega_1^2 + \omega_2^2) + \frac{v^2}{1 - v^2/3} ,$ $\sigma' = \sigma - (q_0\omega_0 + q_1\omega_1 + q_2\omega_2) ,$ $a_{\sigma} = 2\left(1 - \gamma^2 - q_0^2 - q_1^2 - q_2^2\right)^{-1}$ $F_q = -T \log \left(C_{\sigma}^3 - \frac{1}{6} C_{\sigma} C_{\mu}^2 - \frac{1}{3} C_{\sigma} + \frac{3}{4} C_{\mu}^3 - \frac{1}{2} C_{\mu} \right)$ $F_{b} = \frac{1}{2L^{3}} \sum_{\mathbf{k}} \log \left[1 + \frac{c^{2}s^{2}(\mathbf{k})}{16} \right] \simeq -a_{0}^{(b)}f^{(b)}\left(\frac{c\Lambda}{4}\right)$ $C_{\mu} = \cosh \beta \mu$, $C_{\sigma} = \cosh\left[\beta \sinh^{-1}\widetilde{\sigma}\right] ,$ $f^{(b)} = \frac{3}{2r^3} \int_0^x k^2 dk \log(1+k^2) ,$ $\widetilde{\sigma} = m_0 + \sigma$. $s^{2}(\mathbf{k}) = \sin^{2} k_{1} + \sin^{2} k_{2} + \sin^{2} k_{3}$, $c_b = \frac{\omega_0}{a_0} \left[\frac{1}{9\gamma^2} + \frac{\omega_1 \omega_2}{a_1 a_0} E(v) \right] ,$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Summary

- While full Lattice QCD is not (yet?) applicable to study low T and high p matter, we can obtain qualitative feature of the Phase Diagram with the Strong Coupling Limit of LQCD with Nc=3.
 - ★ With Nc = 3, Two Fermion Integrals would give different results from Nc=2 case.
 - * 2nd order \rightarrow 1st order as μ increases. (Chiral Limit)
- With Diquark Condensate, we have developed "angle average" technique for colored condensate.
 - * Consistent with the results with previous one when v=0
 - * Diquark condensate can grow when σ is small.
 - * Phase diagram \rightarrow To be investigated later

Collaborators

• T. Ohnuma (M1)

• N. Kawamoto (Hokkaido U.)

• K. Miura (M2)

Thank You !

QCD Phase Diagram from Lattice QCDZero Chem. Pot. Finite Chem. Pot.

★ JLQCD Collab. (S. Aoki et al.), Nucl. Phys. Proc. Suppl. 73 (1999), 459.

★ Fodor & Katz, JHEP 0203 (2002), 014.

Zero Chem. Pot. : Cross Over Finite Chem. Pot.: Critical End Point

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Step 2: Auxiliary Fields and MFA (2b) Auxiliary Fields

 $\exp\left[(\bar{B}, V_B B)\right] = \det V_B \int \mathcal{D}[\bar{b}, b] \exp\left[-(\bar{b}, V_B^{-1} b) + (\bar{b}, B) + (\bar{B}, b)\right]$ $\exp\left(\bar{b}B + \bar{B}b\right)$ $= \int \mathcal{D}[\phi_a, \phi_a^{\dagger}] \exp\left\{-\frac{1}{4\gamma^2}\phi_a^{\dagger}\phi_a - \frac{1}{2\gamma}(\phi_a^{\dagger}D_a + D_a^{\dagger}\phi_a) + \frac{1}{36\gamma^2}M\bar{b}b - 2\gamma^2M^2\right\}$ $D_a = \gamma \varepsilon_{abc} \chi^b \chi^c + \frac{1}{6\gamma} \bar{\chi}^a b , \quad D_a^{\dagger} = -\gamma \varepsilon_{abc} \bar{\chi}^b \bar{\chi}^c + \frac{1}{6\gamma} \bar{b} \chi^a$ $\exp\left|\frac{1}{36\gamma^2}M\bar{b}b\right| = \int \mathcal{D}[\omega] \exp\left[-\frac{1}{2a_{\perp}^2}\omega^2 - \frac{\omega}{a_{\perp}}(\alpha M + g_{\omega}\bar{b}b) - \frac{1}{2}\alpha^2 M^2\right]$ $\exp\left[\frac{1}{2}(M,\widetilde{V}_MM) - \frac{\alpha}{a_N}(\omega,M)\right] = \int \mathcal{D}[\sigma] \exp\left[-\frac{1}{2}(\sigma',\widetilde{V}_M^{-1}\sigma') - (\sigma,M)\right]$ $\sigma'(x) = \sigma(x) - \alpha \omega(x) / g_{\omega} .$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

RMF with σ Self Energy from Strong Coupling Limit Lattice QCD

RMF with Chiral Symmetry (1)

Good (approximate) Symmetry in QCD

- * Only the current quark mass terms break chiral sym.
- * Spontaneously Broken, and q q determines hadron masses
- Schematic model: Linear σ model

$$L = \frac{1}{2} \Big(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \partial^{\mu} \pi \Big) - \frac{\lambda}{4} \Big(\sigma^{2} + \pi^{2} \Big)^{2} + \frac{\mu^{2}}{2} \Big(\sigma^{2} + \pi^{2} \Big) + C \sigma + \overline{N} i \partial_{\mu} \gamma^{\mu} N - g_{\sigma} \overline{N} \Big(\sigma + i \pi \tau \gamma_{5} \Big) N$$

- **Problem:** χ Sym. is restored at a very small density.
 - * Smaller Nucleon Mass Energies are preferred
 - σω Coupling stabilizes normal vacuum, but gives Too Stiff EOS

• J. Boguta, PLB120,34/PLB128,19.

Colloquium in NagawaeetyadroBpT Polkald (2004)2055/04/26)

RMF with Chiral Symmetry (2)

Sudden Change of $<\sigma>$

σ ω Coupling

$$L_{\omega\sigma} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} C_{\sigma\omega} \sigma^2 \omega^2 - g_{\omega} \overline{N} \gamma_{\mu} \omega^{\mu} N$$
$$\omega = g_{\omega} \rho_B / C_{\sigma\omega} \sigma^2 \quad \rightarrow \quad V_{\sigma\omega} = \frac{g_{\omega}^2 \rho_B^2}{2 C_{\sigma\omega} \sigma^2}$$

Stiff EOS

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

RMF with σ Self Energy from SCL-LQCD σ Self Energy from simple Strong Coupling Limit LQCD

$$S \rightarrow -\frac{1}{2}(M, V_M M) \quad (1/d \text{ expansion})$$

 $\rightarrow b\sigma^2 + (\bar{\chi} \sigma \chi) \quad (\text{auxiliary field})$

$$\rightarrow b\sigma^2 - a\log\sigma^2$$
 (Fermion Integral)

RMF Lagrangian

* σ is shifted by f_{π} , and small explicit χ breaking term is added. $\mathcal{L} = \bar{\psi} (i\gamma^{\mu}\partial_{\mu} - \gamma^{\mu}V_{\mu} - M + g_{\sigma}\sigma) \psi + \mathcal{L}_{\sigma}^{(0)} + \mathcal{L}_{\omega}^{(0)} + \mathcal{L}_{\rho}^{(0)} - U_{\sigma} + \frac{\lambda}{4} (\omega_{\mu}\omega^{\mu})^{2}$

$$U_{\sigma} = -af\left(\frac{\sigma}{f_{\pi}}\right) , \quad f(x) = 2\log(1+x) - 2x + x^2 , \quad a = \frac{f_{\pi}^2}{4}(m_{\sigma}^2 - m_{\pi}^2)$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Nuclear Matter and Finite Nuclei

Nuclear Matter

* By tuning λ , $g_{\omega N}$, m_{σ} , **Soft EOS** can be obtained in Chirally Symmetric Finite Nuclei

 By tuning gpN, Global behavior of Nuclear B.E. is reproduced, except for j-j closed nuclei. (C, Si, Ni)

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Single A Hypernucleus

2006年4月5日

JPS-04 spring at Noda, Tokyo University of Science

Slide 38