Strong Coupling Limit Lattice QCD Approach to Nuclear Matter

Akira Ohnishi (Hokkaido Univ.) in collaboration with N. Kawamoto, K. Miura, T. Ohnuma

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics kaido Hniversitv

Hadronic Matter Phase Diagram

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics
Graduate School of Science Hokkaido University http://phys.sci.hokudai.ăc.

Phase Diagram in Strong Coupling Limit Lattice QCD with N^c =3

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics Graduate School of Science Hokkaido University http://phys.sci.hokudai.ăc.ji

Strong Coupling Limit Lattice QCD (1) Full Lattice QCD at large μ and low T is not possible Fermion Det. becomes complex → Monte-Carlo breaks down Small μ → Re-Weighting / Expansion in μ Strong Coupling Limit: g → ∞ Semi-analytic analyses become possible. At μ=0, Chiral Restoration at high T is explained. **Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211** $At \mu \neq 0$ and $N_c = 2$, Phase diagram is drawn. \rightarrow *Baryon* = *Boson with* N_c = 2

Nishida, Fukushima, Hatsuda, PRept 394(2004),281. *At* $\mu \neq 0$, T=0 and $N_c = 3$, U_0 integral is done only *approximately.*

Azcoiti, Di. Carlo, Galante, Laliena, hep-lat/0307019.

Strong Coupling Limit Lattice QCD (2)

Chiral Restoration at μ=0.

Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211

Phase Diagram with Nc=2

Nishida, Fukushima, Hatsuda, PRept 394(2004),281.

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Hokkaido University

Strong Coupling Limit Lattice QCD (3)

- *Proper Understanding of QCD phase diagram with* $N_c = 3$ *is not achieved yet.*
	- *Nc=2: Diquark = Color Singlet Boson = Baryon → No Fermi Energy for Baryons ?*
	- *Nc=3: 1/d Expansion also for U⁰ term. → Conversion would be bad.*
		- **Azcoiti, Di. Carlo, Galante, Laliena, hep-lat/0307019.**
- *This work:*
	- *Nc=3: Baryon Integral is required*
	- *EXACT integral of U⁰ term*
	- *Diquark condensate is tentatively ignored.*

Useful Techniques in Lattice QCD Fermion determinant \overline{D} *D* \overline{X} exp $(\overline{X}$ G $X)$ = det G

Group Integral

$$
\int \mathcal{D}[U]U_{ij}U_{kl}^\dagger = \frac{1}{N_c}\delta_{il}\delta_{jk} \ , \quad \int \mathcal{D}[U]U_{ij}U_{kl}U_{mn} = \frac{1}{N_c!}\varepsilon_{ikm}\varepsilon_{jln}
$$

Polyakov Gauge and SU(3) Group Integral $\boldsymbol{U}_0(\boldsymbol{x}) = \text{diag}(\exp(i\theta_1), \exp(i\theta_2), \exp(i\theta_3)), \theta_1 + \theta_2 + \theta_3 = 0$

$$
\int \mathcal{D}[U_0] = \prod_i \left[\int_{-\pi}^{\pi} \frac{d\theta_i}{2\pi} \right] \delta(\sum_j \theta_j) \Delta
$$

$$
\Delta = \prod_{i < j} \left| e^{i\theta_i} - e^{i\theta_j} \right|^2 = \prod_{i < j} 2 \left[1 - \cos(\theta_i - \theta_j) \right]
$$

Bosonization, Mean Field Approximation,

Step 0: Lattice Action in SCL-LQCD

Lattice Action with staggered Fermions

$$
\mathcal{U}_{\mathbf{v}}^{\dagger} \mathcal{U}_{\mathbf{v}}
$$

In the Strong Coupling Limit (g → ∞), we can ignore SG, and semi-analytic calculation becomes possible.

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics kkaido Universitv

Step 1: Integral over Uj: 1/d Expansion (1) *Group Integral*

$$
\int \mathcal{D}[U]U_{ij}U_{kl}^{\dagger} = \frac{1}{N_c} \delta_{il} \delta_{jk} , \quad \int \mathcal{D}[U]U_{ij}U_{kl}U_{mn} = \frac{1}{N_c!} \varepsilon_{ikm} \varepsilon_{jln}
$$

Expand exp(-SF), and perform U^j integral.

$$
I_j \equiv \int \mathcal{D}[U_j(x)] \exp\left[\frac{-\eta_j(x)}{2} \left\{ \bar{\chi}(x)U_j(x)\chi(x+\hat{j}) - \bar{\chi}(x+\hat{j})U_j^{\dagger}(x)\chi(x) \right\} \right]
$$

\n
$$
= \int \mathcal{D}[U_j(x)] \left\{ 1 + \frac{1}{8} \left[\bar{\chi}(x)U_j(x)\chi(x+\hat{j}) - \bar{\chi}(x+\hat{j})U_j^{\dagger}(x)\chi(x) \right]^2
$$

\n
$$
+ \left(\frac{-\eta_j}{2} \right)^{N_c} \frac{1}{N_c!} \left[\bar{\chi}(x)U_j(x)\chi(x+\hat{j}) - \bar{\chi}(x+\hat{j})U_j^{\dagger}(x)\chi(x) \right]^{N_c} + \ldots \right\}
$$

\n
$$
= 1 - \frac{1}{4N_c} \bar{\chi}^a(x)\chi^b(x_j)\bar{\chi}^b(x_j)\chi^a(x)
$$

\n
$$
+ \left(\frac{-\eta_j}{2} \right)^{N_c} \frac{1}{(N_c!)^2} \varepsilon_{acc} \varepsilon_{bdf} \left[\bar{\chi}^a(x)\chi^b(x_j)\bar{\chi}^c(x)\chi^d(x_j)\bar{\chi}^e(x)\chi^f(x_j) - \bar{\chi}^a(x_j)\chi^b(x)\bar{\chi}^c(x_j)\chi^d(x)\bar{\chi}^e(x_j)\chi^f(x) \right] + \ldots
$$

\n
$$
= \exp\left[\frac{1}{4N_c} M(x)M(x_j) + \left(\frac{-\eta_j}{2} \right)^{N_c} (\bar{B}(x) B(x_j) - \bar{B}(x_j) B(x)) + \ldots \right]
$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics Graduate School of Hokkaido University

Step 1: Integral over Uj: 1/d Expansion (2) Action in Meson and Baryon Fields made of Quarks $[S_F^{(j)}[\chi^a,\bar{\chi}^a]=-{1\over 2}(M,V_MM)-(\bar{B},V_BB)$ $M(x) = \delta_{ab} \bar{\chi}^a(x) \chi^b(x)$, $B(x)=\frac{1}{6}\varepsilon_{abc}\chi^a(x)\chi^b(x)\chi^c(x)\ ,\quad \bar{B}(x)=\frac{1}{N!}\varepsilon_{abc}\bar{\chi}^c(x)\bar{\chi}^b(x)\bar{\chi}^a(x)$ $V_M(x,y) = \frac{1}{4N_c} \sum_{i=1}^{5} \left(\delta_{y,x+i} + \delta_{y,x-i} \right)$ $V_B(x,y) = \sum_{n=1}^{3} \left(\frac{-\eta_j(x)}{2} \right)^{N_c} \left(\delta_{y,x+\hat{j}} - \delta_{y,x-\hat{j}} \right)$

In SCL, spatial gluon components can be integrated out !

Step 2: Auxiliary Fields and MFA (1) Pfaffian Integral: Bi-Linear in Grassmann variables (χ and b) → Determinant

$$
G \equiv \int \mathcal{D}[\chi, \bar{\chi}] e^{\bar{\mathbf{X}} \mathbf{G}^{-1} \mathbf{X}} = \prod_{\mathbf{x}} \left\{ \det \left[\mathbf{G}_{ab}^{-1}(m, n) \right] \right\}^{1/2} \qquad \mathbf{X} = (\chi, \bar{\chi})
$$

Reduce the action to Bi-Linear form in χ → Auxiliary Fields

Baryon Field $\exp\left[(\bar{B},V_BB)\right] = \det V_B \int \mathcal{D}[\bar{b},b] \exp\left[-(\bar{b},V_B^{-1}b) + (\bar{b},B) + (\bar{B},b) \right]$

Di-quark Field

$$
D_a = \gamma \varepsilon_{abc} \chi^b \chi^c + \frac{1}{6\gamma} \bar{\chi}^a b , \quad D_a^{\dagger} = -\gamma \varepsilon_{abc} \bar{\chi}^b \bar{\chi}^c + \frac{1}{6\gamma} \bar{b} \chi^a
$$

$$
D_a^{\dagger} D_a = 2\gamma^2 M^2 + \bar{B}b + \bar{b}B - \frac{1}{36\gamma^2} M \bar{b}b
$$

$$
\int \mathcal{D}[\phi_a, \phi_a^{\dagger}] \exp \left\{ -(\phi_a^{\dagger}/2\gamma + D_a^{\dagger})(\phi_a/2\gamma + D_a) + D_a^{\dagger} D_a \right\} = \exp \left\{ D_a^{\dagger} D_a \right\}
$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of P kaido Hniversitv

Step 2: Auxiliary Fields and MFA (2) Auxiliary Fields (cont.)

Baryon Potenital (note: $(\bar{b}\,\bar{b})^2 = 0$) $\exp\left[\frac{1}{36\gamma^2}M\bar{b}b\right] = \int \mathcal{D}[\omega]\exp\left[-\frac{1}{2q_{\omega}^2}\omega^2 - \frac{\omega}{q_{\omega}}(\alpha M + g_{\omega}\bar{b}b) - \frac{1}{2}\alpha^2M^2\right]$

Chiral Condensate σ

$$
\exp\left[\frac{1}{2}(M,\widetilde{V}_M M) - \frac{\alpha}{g_\omega}(\omega, M)\right]
$$

= $\int \mathcal{D}[\sigma] \exp\left[-\frac{1}{2}(\sigma', \widetilde{V}_M^{-1}\sigma') + \frac{1}{2}(M, \widetilde{V}_M M) - \frac{\alpha}{g_\omega}(\omega, M)\right]$
= $\int \mathcal{D}[\sigma] \exp\left[-\frac{1}{2}(\sigma - \alpha\omega/g_\omega, \widetilde{V}_M^{-1}(\sigma - \alpha\omega/g_\omega)) - (\sigma, M)\right]$
 $\sigma'(x) = \sigma(x) - \alpha\omega(x)/g_\omega + \widetilde{V}_M(x, y)M(y).$

Step 2: Auxiliary Fields and MFA (3, Summary) Action with Auxiliary Fields

Bi-Linear in χ and b → Determinant Technique Local in position → Small Matrix Size Contains coupling term of χ and b → Problematic ... $S_F[U_0, \chi^a, \bar{\chi}^a, b, \bar{b}, \phi_a, \phi_a^{\dagger}, \omega, \sigma] = S_F^{(q)} + S_F^{(X)}$ $S_F^{(X)} = (\bar{b}, \widetilde{V}_B^{-1}b) + (\phi^{\dagger}, \phi)/4\gamma^2 + \frac{1}{2}\omega^2/g_{\omega}^2 + \frac{1}{2}(\sigma - \alpha\omega/g_{\omega}, \widetilde{V}_M^{-1}(\sigma - \alpha\omega/g_{\omega}))$ $S_F^{(q)} = S_F^{(m)} + S_F^{(jq)} + S_F^{(U0)}$ $= (\sigma + m_0, M) + (\phi_a^{\dagger}, D_a)/2\gamma + (D_a^{\dagger}, \phi_a)/2\gamma + S_F^{(U0)}$ $= (\bar{x}^a, (\sigma + m_0)\chi^a) + (\bar{x}^a, \phi^{\dagger}_a b/12\gamma^2) + (\bar{b}\phi_a/12\gamma^2, \chi^a)$ $+\frac{1}{2}\varepsilon_{cab}\left[\left(\phi_c^{\dagger},\chi^a\chi^b\right)-\left(\bar{\chi}^a\bar{\chi}^b,\phi_c\right)\right]$ $+\frac{1}{2}\sum \left\{\bar{\chi}(x)e^{\mu}U_0(x)\chi(x+\hat{0})-\bar{\chi}(x+\hat{0})U_0^{\dagger}(x)e^{-\mu}\chi(x)\right\}$

Step 3: Fermion Determinant (1-1)

Fourier Transformation

- *Anti-Periodic Boundary Condition is Satisfied*
- *"Derivative" term becomes sin(kt)*

$$
\psi(x) = \frac{1}{\sqrt{\beta}} \sum_{m=1}^{\beta} e^{ik_m \tau} \psi_m(\mathbf{x}), \quad \bar{\psi}(x) = \frac{1}{\sqrt{\beta}} \sum_{m=1}^{\beta} e^{-ik_m \tau} \bar{\psi}_m(\mathbf{x})
$$

$$
S_F^{(q)} = \sum_{\mathbf{x}} \sum_{m=1}^{\beta} \left[B_m^a \bar{\chi}_m^a \chi_m^a + \bar{C}_m^a \chi_m^a + \bar{\chi}_m^a C_m^a + \frac{1}{2} \varepsilon_{abc} (\phi_c^{\dagger} \chi_m^a \chi_m^b - \bar{\chi}_m^a \bar{\chi}_m^b \phi_c) \right]
$$

$$
C_m^a(\mathbf{x}) = \frac{1}{12\gamma^2} \phi_a^{\dagger}(\mathbf{x}) b_m(\mathbf{x}), \quad \bar{C}_m^a(\mathbf{x}) = \frac{1}{12\gamma^2} \bar{b}_m(\mathbf{x}) \phi_a(\mathbf{x})
$$

$$
B_m^a(\mathbf{x}) = m_0 + \sigma(\mathbf{x}) + i \sin(k_m + \theta^a(\mathbf{x})/\beta - i\mu)
$$

Step 3: Fermion Determinant (1-2) Pfaffian Form

G: Size=β (Number of Time-Step) x 3 (color) x 2 (χ, χbar)

$$
S_F^{(q)} = \frac{1}{2} \sum_{\mathbf{x},m,n,a,b} \left[\left(\bar{\chi}_m^a, \chi_m^a \right) \begin{pmatrix} B_m^a \delta_{ab} \delta_{mn} & -\varepsilon_{cab} \phi_c \delta_{m,\beta-n+1} \\ \varepsilon_{cab} \phi_c^{\dagger} \delta_{m,\beta-n+1} & -B_m^a \delta_{ab} \delta_{mn} \end{pmatrix} \begin{pmatrix} \chi_n^b \\ \bar{\chi}_n^b \end{pmatrix} \right]
$$

+
$$
\left(\bar{\chi}_m^a, \chi_m^a \right) \begin{pmatrix} C_m^a \\ -\bar{C}_m^a \end{pmatrix} + \left(\bar{C}_m^a, -C_m^a \right) \begin{pmatrix} \chi_m^a \\ \bar{\chi}_m^a \end{pmatrix} \right]
$$

=
$$
\frac{1}{2} \sum_{\mathbf{x},m,n,a,b} \left[\bar{\mathbf{X}}_m^a(\mathbf{x}) \mathbf{G}_{ab}^{-1}(m,n;\theta(\mathbf{x})) \mathbf{X}_n^b(\mathbf{x}) + \left(\bar{\mathbf{X}}_m^a(\mathbf{x}) \mathbf{Y}_m^a(\mathbf{x}) + \bar{\mathbf{Y}}_m^a(\mathbf{x}) \mathbf{X}_m^a(\mathbf{x}) \right) \right]
$$

=
$$
\sum_{\mathbf{x},m,n,a,b} \left[\frac{1}{2} \left(\bar{\mathbf{X}} + \bar{\mathbf{Y}} \mathbf{G} \right)_m^a \mathbf{G}_{ab}^{-1}(m,n) \left(\mathbf{X} + \mathbf{G} \mathbf{Y} \right)_n^b - \frac{1}{2} \bar{\mathbf{Y}}_m^a \mathbf{G}_{ab}(m,n) \mathbf{Y}_n^b \right]
$$

$$
m' = \beta - m + 1
$$

Step 3: Fermion Determinant (1-3) Determinant of Big Matrix G Block diagonal → 6 x 6 Matrix (g) $\int \mathcal{D}[\chi,\bar{\chi}] \exp \left[-S_F^{(q)}\right] = \prod_{\textbf{w}} \prod_{\textbf{w}} \{-\det \left[\mathbf{g}_{ab}(m)\right]\}^{1/2}$ $g(\mathbf{x}, k_m) \equiv -\det [\mathbf{g}_{ab}(m; \theta^a(\mathbf{x}))]$ $= (B_1|\phi_1|^2 + B_2|\phi_2|^2 + B_3|\phi_3|^2)(B_1'|\phi_1|^2 + B_2'|\phi_2|^2 + B_3'|\phi_3|^2)$ + $\sum_{a} B_{a}B_{a}'|\phi_{a}|^{2}(B_{b}B_{c}'+B_{b}'B_{c})+B_{1}B_{2}B_{3}B_{1}'B_{2}'B_{3}'$ $(a,b,c)=cyc.$

Matsubara Frequency Sum → Total Matrix Determinant

$$
G(\mathbf{x}) = \left[\prod_j \left(1 + \cos \beta z_j(\mathbf{x}) \right) \right]^{1/2}
$$

Step 3: Fermion Determinant (1-3b) *Matsubara Sum Technique*

 \star Using *z* (the solution of $g(k)=0$)

$$
\log G(\mathbf{x}) = \log \left[\prod_{m=1}^{\beta} g(\mathbf{x}, k_m) \right] = \sum_{m} \log \left[\prod_{j=1}^{6} \left(\cos k_m - r Y_j(\mathbf{x}) \right) \right]^{1/2} \tag{2.21}
$$

$$
\frac{d \log G(\mathbf{x})}{dr} = \frac{1}{2} \sum_{m,j} \frac{-Y_j}{\cos k_m - rY_j}
$$
\n
$$
= \frac{1}{2\Omega} \sum_{j} \left[\oint \frac{dz}{2\pi i} \frac{-Y_j}{\cos z - rY_j} \frac{-i\beta}{1 + e^{i\beta z}} - \sum_{z_j^p} \frac{-Y_j}{-\sin z_j^r} \frac{-i\beta}{1 + e^{i\beta z_j^r}} \right]
$$
\n
$$
= \frac{i\beta}{2\Omega} \sum_{j,z_j^p} \frac{Y_j}{\sin z_j^r} \frac{1}{1 + \exp(i\beta z_j^r)} = \frac{-i\beta}{2\Omega} \sum_{j,z_j^p} \frac{dz_j^r}{dr} \frac{1}{1 + \exp(i\beta z_j^r)}
$$
\n
$$
= \frac{d}{dr} \frac{1}{2\Omega} \sum_{j,z_j^p} \log \left(1 + \exp(-i\beta z_j^r)\right) \tag{2.22}
$$
\n
$$
\log G(\mathbf{x}) = \frac{1}{2\Omega} \sum_{j} \log \left(1 + \exp(-i\beta z_j)\right) + \text{const.} \tag{2.23}
$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

 $1.2.1$

Division of P Graduate School o Hokkaido Universitv

Step 3: Fermion Determinant (2-1)

Baryon Integral

$$
\widetilde{V}_B^{-1}(x,y)=V_B^{-1}(x,y)+\omega \delta_{x,y}
$$

$$
\left[\mathcal{D}[b,\bar{b}] \exp\left[-\sum_{m,n} \left(\bar{b}_m, \widetilde{V}_B^{-1} b_n\right)\right] \right] \qquad V_B(x,y) = \sum_{j=1}^3 \left(\frac{-\eta_j(x)}{2}\right)^{N_c} \left(\delta_{y,x+\hat{j}} - \delta_{y,x-\hat{j}}\right)
$$

Different Spatial Points are connected → Spatial Fourier Transf.

$$
b_m(\mathbf{x}) = \frac{1}{\sqrt{L^3}} \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{x}} b_{m\mathbf{k}}, \quad \mathbf{k} = \frac{2\pi}{L}(k_1, k_2, k_3)
$$

 \star *Momentum Repr. of* V_B *:*

$$
V_B(m\mathbf{k}, n\mathbf{k}') = \frac{-i}{4} \delta_{m,n}^{\beta} \sum_{j=1,2,3} \prod_{1 \leq i < j} \delta_{k_i, k_i'}^L \prod_{l \geq j} \delta_{k_l, k_l'} \sin k_j
$$
\n
$$
= \frac{-i}{4} \delta_{m,n}^{\beta} \delta_{k_3, k_3'} \left[\delta_{k_1, k_1'} \delta_{k_2, k_2'} \sin k_1 + \delta_{k_1, k_1'}^L \delta_{k_2, k_2'} \sin k_2 + \delta_{k_1, k_1'}^L \delta_{k_2, k_2'}^L \sin k_3 \right],
$$
\n
$$
\delta_{m,n}^{\beta} = \delta_{m,n+\beta/2} + \delta_{m,n-\beta/2} , \quad \delta_{a,b}^L = \delta_{a,b+\pi} + \delta_{a,b-\pi}
$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics Graduate School of Hokkaido Universitv

Step 3: Fermion Determinant (2-2)

Baryon Matrix in Momentum Repr. and Determinant \blacksquare

$$
\sum_{m,n} \left(\bar{b}_m, \tilde{V}_B^{-1} b_n \right)
$$
\n
$$
= \sum_{k_1=1}^{L/2} \sum_{k_2=1}^{L/2} \sum_{k_3} \sum_{m=1}^{\beta/2} \left(\bar{b}_m - \bar{b}'_m \right) \begin{pmatrix} 0 & -\frac{i}{4} S(k) \\ -\frac{i}{4} S(k) & 0 \end{pmatrix} \begin{pmatrix} b_m \\ b'_m \end{pmatrix}
$$
\n
$$
S = \begin{pmatrix} \sin k_1 & \sin k_2 & \sin k_3 & 0 \\ \sin k_2 & -\sin k_1 & 0 & \sin k_3 \\ \sin k_3 & 0 & -\sin k_1 & -\sin k_2 \\ 0 & \sin k_3 & -\sin k_2 & \sin k_1 \end{pmatrix}
$$
\n
$$
b_m = (b_{m(k^{(1)}}, b_{m(k^{(2)}}, b_{m(k^{(3)}}, b_{mk^{(4)}}))
$$
\n
$$
b'_m = (b_{m+\beta/2,k^{(1)}}, b_{m+\beta/2,k^{(2)}}, b_{m+\beta/2,k^{(3)}}, b_{m+\beta/2,k^{(4)}})
$$
\n
$$
k^{(1)} = (k_1, k_2, k_3), \quad k^{(2)} = (k_1 + \pi, k_2, k_3),
$$
\n
$$
k^{(3)} = (k_1 + \pi, k_2 + \pi, k_3), \quad k^{(4)} = (k_1, k_2 + \pi, k_3)
$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics
Graduate School of Science Hokkaido University http://phvs.sci.hokudai.ac.

Step 3: Fermion Determinant (2-3) Effective Potential from Baryon Loop $\exp(-\beta L^3 F_{\text{eff}}^{(b)}) \equiv \text{Det}V_B \int \mathcal{D}[b,\bar{b}] \exp \left[-\sum_{m} \left(\bar{b}_m, \widetilde{V}_B^{-1} b_n\right)\right]$ $=$ DetV_BDet $[V_R^{-1} + \omega \mathbf{1}] =$ Det $[1 + \omega V_B]$ $=\prod_{k_1=1}^{L/2}\prod_{k_2=1}^{L/2}\prod_{k_3=1}^{L}\prod_{m=1}^{\beta/2}\det\Biggl[\begin{pmatrix}1&-i\omega\mathbf{S}/4\\-i\omega\mathbf{S}/4&1\end{pmatrix}\Biggr]$ $= \prod_{i=1}^{L/2} \prod_{i=1}^{L/2} \prod_{i=1}^{L/2} (1 + \omega^2 s^2 / 16)^4 = \prod_{i=1}^{L/2} \prod_{i=1}^{L/2} (1 + \omega^2 s^2 / 16)^{2\beta}$ $L/2$ $L/2$ L $\beta/2$ $k_1=1$ $k_2=1$ $k_3=1$ $m=1$ $k_1=1$ $k_2=1$ $k_3=1$ $=\prod (1+\omega^2 s^2/16)^{\beta/2}$ $F_{\text{eff}}^{(b)} = -\frac{1}{2L^3} \sum_{L} \log \left[1 + \frac{\omega^2 s^2}{16}\right]$ $\approx -\frac{a_0^{(b)}}{2}\left(\frac{4\pi}{3}A^3\right)^{-1}\int_0^A 4\pi k^2dk\log\left[1+c^2k^2\right]$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics
Graduate School of Science kaido Universitv

Step 4: Gluon Integral (1)

Link Variable in Polyakov gauge

 $\boldsymbol{U}_0(\boldsymbol{x}) = \boldsymbol{diag}\left(\boldsymbol{exp}\left(\boldsymbol{i}\theta_1\right), \boldsymbol{exp}\left(\boldsymbol{i}\theta_2\right), \boldsymbol{exp}\left(\boldsymbol{i}\theta_3\right)\right), \theta_1 + \theta_2 + \theta_3 = \boldsymbol{0}$

SU(3) Haar Measure

$$
\int \mathcal{D}[U_0] = \prod_i \left[\int_{-\pi}^{\pi} \frac{d\theta_i}{2\pi} \right] \delta(\sum_j \theta_j) \Delta
$$

$$
\Delta = \prod_{i < j} \left| e^{i\theta_i} - e^{i\theta_j} \right|^2 = \prod_{i < j} 2 \left[1 - \cos(\theta_i - \theta_j) \right]
$$

Step 4: Gluon Integral (2)

Quark Integral at φ=0 (without diquark condensate)

$$
\beta z_i^{\pm} = \theta_i - i\beta \mu \pm i\beta \sinh^{-1} \tilde{\sigma} , \quad \tilde{\sigma} = m_0 + \sigma
$$

$$
\sinh^{-1} x = \log(\sqrt{1 + x^2} + x)
$$

$$
G = \prod_{i} \left[(1 + \cos \beta z_i^+) (1 + \cos \beta z_i^-) \right]^{1/2} = F_1 F_2 F_3
$$

\n
$$
F_i = C_{\sigma} + C_{\mu} \cos \theta_i - i S_{\mu} \sin \theta_i
$$

\n
$$
C_{\sigma} = \cosh \left[\beta \sinh^{-1} \tilde{\sigma} \right]
$$

\n
$$
C_{\mu} = \cosh \beta \mu , \quad S_{\mu} = \sinh \beta \mu
$$

*Gluon Integral*ø

$$
\int dU_0 G = C_\sigma^3 - \frac{1}{6} C_\sigma C_\mu^2 - \frac{1}{3} C_\sigma + \frac{3}{4} C_\mu^3 - \frac{1}{2} C_\mu
$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics
Graduate School of Science Hokkaido University http://phvs.sci.hokudai.ac.

Effective Potential at Zero Quark Condensate

Fermion Integral, Matsubara Freq. Sum, and U⁰ Integral → Effective Action at Zero Diquark Condensate

$$
F_{\text{eff}} = \frac{\sigma^2}{2\alpha^2} + F_{\text{eff}}^{(q)} + F_{\text{eff}}^{(b)}
$$

\n
$$
F_{\text{eff}}^{(q)} = -T \log \left(C_{\sigma}^3 - \frac{1}{6} C_{\sigma} C_{\mu}^2 - \frac{1}{3} C_{\sigma} + \frac{3}{4} C_{\mu}^3 - \frac{1}{2} C_{\mu} \right)
$$

\n
$$
C_{\sigma} = \cosh \left[\beta \sinh^{-1} \sigma \right] , \quad C_{\mu} = \cosh \beta \mu
$$

\n
$$
F_{\text{eff}}^{(b)} \simeq -a_0^{(b)} f^{(b)}(c\Lambda) , \quad f^{(b)}(x) = \frac{3}{2x^3} \int_0^x k^2 dk \log(1 + k^2)
$$

Two Types of Fermion Log(Det) Terms !

Phase Diagram

Minimum of Effective Action → Phase Diagram

Kawamoto, Miura, AO, Ohnuma, in preparation.

Change from 2nd order to 1st order at Finite μ

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of kaido Universitv

Free Energy Surface

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics Graduate School of Hokkaido University

Treatment of Diquark Condensate (1)

Diquark Condensate with Nc=3

$$
D_a = \gamma \varepsilon_{abc} \chi^b \chi^c + \frac{1}{6\gamma} \bar{\chi}^a b
$$

Have Color → Expectation Value=0 → Cannot be Order Par. Color Singlet Combination $v^2 = \phi_a^* \phi_a$

Idea: Leave v2, and integrate other "angle" variables

$$
Y = \frac{\gamma^2}{2}M^2 - \frac{1}{9\gamma^2}M\bar{b}b = D_a^{\dagger}D_a - (\bar{b}B + \bar{B}b)
$$

$$
e^{\bar{b}B+\bar{B}b}=\int\mathcal{D}[\phi_a,\phi_a^\dagger]e^{-\phi_a^\dagger\phi_a+\phi_a^\dagger D_a+D_a^\dagger\phi_a-Y}
$$

$$
\int \mathcal{D}[\phi_a, \phi_a^\dagger] \exp \left\{ \phi_a^\dagger D_a + D_a^\dagger \phi_a \right\} = \int \mathcal{D}[v] \exp \left\{ \frac{v^2}{3} D_a^\dagger D_a + \frac{v^4}{162} M^3 \bar{b} b \right\}
$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of aido Hniversitv

Treatment of Diquark Condensate (2)

Self-Consistent Replacement of quark-baryon coupling ø

$$
\exp(\bar{b}B + \bar{B}b)
$$

\n
$$
\approx \exp\left[-v^2 - Y + \frac{v^2}{3}(\bar{b}B + \bar{B}b + Y) + \frac{v^4}{162}M^3\bar{b}b\right]
$$

\n
$$
\approx \exp\left[\frac{-v^2}{1 - v^2/3} + E(v)M^3\bar{b}b - Y\right]
$$

\n
$$
E(v) = \frac{v^4}{162(1 - v^2/3)}
$$

Reduction of $M^n\overline{b}b$ *term*

$$
e^{EM^3\bar{b}b} = \int \mathcal{D}[\omega_2] e^{-\omega_2^2/2 - \omega_2(g_2M + EM^2\bar{b}b/g_2) - g_2M^2/2}
$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics
Graduate School of Science Hokkaido University

Treatment of Diquark Condensate (3) Effective Potential with Chiral and Color Condensates $F_{\text{eff}}(v, \sigma, \omega_i) = F_X + F_b + F_a$ $F_X = \frac{1}{2}(a_\sigma \sigma^2 + \omega_0^2 + \omega_1^2 + \omega_2^2) + \frac{v^2}{1 - v^2/3}$ $\sigma' = \sigma - (g_0\omega_0 + g_1\omega_1 + g_2\omega_2)$, $a_{\sigma} = 2\left(1 - \gamma^2 - g_0^2 - g_1^2 - g_2^2\right)^{-1}$ $F_q = -T \log \left(C_\sigma^3 - \frac{1}{6} C_\sigma C_\mu^2 - \frac{1}{3} C_\sigma + \frac{3}{4} C_\mu^3 - \frac{1}{2} C_\mu \right)$ $F_b = \frac{1}{2L^3} \sum \log \left[1 + \frac{c^2 s^2(\mathbf{k})}{16} \right] \simeq -a_0^{(b)} f^{(b)} \left(\frac{c\Lambda}{4} \right)$ $C_{\mu} = \cosh \beta \mu$, $C_{\sigma} = \cosh \left[\beta \sinh^{-1} \tilde{\sigma} \right]$, $f^{(b)} = \frac{3}{2r^3} \int_0^x k^2 dk \log(1 + k^2) ,$ $\widetilde{\sigma} = m_0 + \sigma$. $s^{2}(\mathbf{k}) = \sin^{2} k_{1} + \sin^{2} k_{2} + \sin^{2} k_{3}$, $c_b = \frac{\omega_0}{a_0} \left[\frac{1}{9\gamma^2} + \frac{\omega_1\omega_2}{a_1a_2} E(v) \right] ,$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics

Summary

- *While full Lattice QCD is not (yet?) applicable to study low T and high ρ matter, we can obtain qualitative feature of the Phase Diagram with the Strong Coupling Limit of LQCD with Nc=3.*
	- *With Nc = 3, Two Fermion Integrals would give different results from Nc=2 case.*
	- *2nd order → 1st order as μ increases. (Chiral Limit)*
- *With Diquark Condensate, we have developed "angle average" technique for colored condensate.*
	- *Consistent with the results with previous one when v=0*
	- *Diquark condensate can grow when σ is small.*
	- *Phase diagram → To be investigated later*

Collaborators

T. Ohnuma (M1)

N. Kawamoto (Hokkaido U.)

K. Miura (M2)

Thank You !

QCD Phase Diagram from Lattice QCD Zero Chem. Pot. Finite Chem. Pot.

JLQCD Collab. (S. Aoki et al.), Nucl. Phys. Proc. Suppl. 73 (1999), 459.

Fodor & Katz, JHEP 0203 (2002), 014.

 Zero Chem. Pot. : Cross Over Finite Chem. Pot.: Critical End Point

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics Graduate School of Hokkaido Universitv

Step 2: Auxiliary Fields and MFA (2b) *Auxiliary Fields*

 $\exp\left[(\bar{B},V_B B) \right] = \det V_B \int \mathcal{D}[\bar{b},b] \exp\left[-(\bar{b},V_B^{-1}b) + (\bar{b},B) + (\bar{B},b) \right]$ $\exp(\bar{b}B + \bar{B}b)$ $=\int {\cal D}[\phi_a,\phi_a^{\dagger}] \exp\left\{-\frac{1}{4\gamma^2}\phi_a^{\dagger}\phi_a-\frac{1}{2\gamma}(\phi_a^{\dagger}D_a+D_a^{\dagger}\phi_a)+\frac{1}{36\gamma^2}M\bar{b}b-2\gamma^2M^2\right\}$ $D_a = \gamma \varepsilon_{abc} \chi^b \chi^c + \frac{1}{6\gamma} \bar{\chi}^a b \; , \quad D_a^{\dagger} = - \gamma \varepsilon_{abc} \bar{\chi}^b \bar{\chi}^c + \frac{1}{6\gamma} \bar{b} \chi^a$ $\exp\left[\frac{1}{36\gamma^2}M\bar{b}b\right] = \int \mathcal{D}[\omega]\exp\left[-\frac{1}{2g_{\omega}^2}\omega^2 - \frac{\omega}{g_{\omega}}(\alpha M + g_{\omega}\bar{b}b) - \frac{1}{2}\alpha^2M^2\right]$ $\exp\left[\frac{1}{2}(M,\widetilde{V}_M M)-\frac{\alpha}{a}(\omega,M)\right]=\int \mathcal{D}[\sigma] \exp\left[-\frac{1}{2}(\sigma',\widetilde{V}_M^{-1}\sigma')-(\sigma,M)\right]$ $\sigma'(x) = \sigma(x) - \alpha \omega(x)/g_{\omega}.$

RMF with σ Self Energy from Strong Coupling Limit Lattice QCD

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics Graduate School of Science Hokkaido University http://phys.sci.hokudai.ac.ji

RMF with Chiral Symmetry (1)

Good (approximate) Symmetry in QCD

- *Only the current quark mass terms break chiral sym.*
- S pontaneously Broken, an $d\bar{q}$ q \rangle $\;$ determines hadron masses
- *Schematic model: Linear σ model*

$$
L = \frac{1}{2} \Big(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \partial^{\mu} \pi \Big) - \frac{\lambda}{4} \Big(\sigma^2 + \pi^2 \Big)^2 + \frac{\mu^2}{2} \Big(\sigma^2 + \pi^2 \Big) + C \sigma
$$

+ $\overline{N} \dot{\mathbf{1}} \partial_{\mu} \gamma^{\mu} \mathbf{N} - \mathbf{g}_{\sigma} \overline{N} \Big(\sigma + \mathbf{1} \pi \tau \gamma_5 \Big) \mathbf{N}$

- *Problem: χ Sym. is restored at a very small density.*
	- *Smaller Nucleon Mass Energies are preferred*
	- *σω Coupling stabilizes normal vacuum, but gives Too Stiff EOS*

J. Boguta, PLB120,34/PLB128,19.

Colloquium in N**Q gawra e6tyadrdPg Polkaid (2004)255**/04/26)

RMF with Chiral Symmetry (2)

Sudden Change of <σ>

σ ω Coupling

$$
L_{\omega\sigma} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} C_{\sigma\omega} \sigma^2 \omega^2 - g_{\omega} \overline{N} \gamma_{\mu} \omega^{\mu} N
$$

$$
\omega = g_{\omega} \rho_B / C_{\sigma\omega} \sigma^2 \longrightarrow V_{\sigma\omega} = \frac{g_{\omega}^2 \rho_B^2}{2 C_{\sigma\omega} \sigma^2}
$$

Stiff EOS

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics
Graduate School of Science Hokkaido University

RMF with σ Self Energy from SCL-LQCD σ Self Energy from simple Strong Coupling Limit LQCD

$$
S \rightarrow -\frac{1}{2}(M, V_M M) \qquad (1/d \text{ expansion})
$$

$$
\rightarrow b\sigma^2 + (\bar{\chi} \sigma \chi) \qquad \text{(auxiliary field)}
$$

 \rightarrow $b\sigma^2 - a\log \sigma^2$ (Fermion Integral)

RMF Lagrangian

 σ is shifted by f_π , and small explicit χ breaking term is added. $\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \gamma^{\mu} V_{\mu} - M + g_{\sigma} \sigma \right) \psi + \mathcal{L}_{\sigma}^{(0)} + \mathcal{L}_{\omega}^{(0)} + \mathcal{L}_{\rho}^{(0)}$ $-U_{\sigma} + \frac{\lambda}{4}(\omega_{\mu}\omega^{\mu})^2$

$$
U_{\sigma} = -af\left(\frac{\sigma}{f_{\pi}}\right) , \quad f(x) = 2\log(1+x) - 2x + x^2 , \quad a = \frac{f_{\pi}^2}{4}(m_{\sigma}^2 - m_{\pi}^2)
$$

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics ckaido Hniversitv

Nuclear Matter and Finite Nuclei

Nuclear Matter

By tuning λ, gωN, m^σ , Soft EOS can be obtained in Chirally Symmetric RMF

Finite Nuclei

By tuning gρN, Global behavior of Nuclear B.E. is reproduced, except for j-j closed nuclei. (C, Si, Ni)

Colloquium in Nuclear Theory Group, Hokkaido Univ. (2005/04/26)

Division of Physics Graduate School of Hokkaido Universitv

Single Λ Hypernucleus

2006年4月5日 JPS-04 spring at Noda, Tokyo University of Science Slide 38