Jet-Fluid String Formation and Decay in High-Energy Heavy-Ion Collisions

> **Akira Ohnishi in Collaboration with T.Hirano,M.Isse,Y.Nara,K.Yoshino**

- **Introduction**
- **Jet-Fluid String (JFS) model**
- **Results**
- **Summary**

Hadronic Matter Phase Diagram

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 2 / 16

Physics of Hot Nuclear Matter

- **Why is it interesting ?**
	- **Lattice QCD: We should see QCD phase transition !**
	- **Modification of Hadrons in Hot Medium**
	- **Close relation to Compact Astrophysical Objects**
- \blacksquare **How do we heat the Nucleus ?**
	- **Hot but Not Dense: High-Energy proton (light ion) induced Reaction, Absorption of pbar,** π **,**
	- **Hot and/or Dense: High-Energy Heavy-Ion Collisions**
- **What do we want to know in High-E. HI Collisions ?**
	- **Formation and Confirmation of QGP**
	- **Hadron Properties in Hot Nuclear Matter**
	- **Equation of State**

QGP Signals at RHIC

- **High pT: Jet Quenching →** *Independent* **Fragmentation of Jet Partons which experienced Energy Loss in QGP.** \rightarrow *How about v*₂ *at high p*_{*T*} ?
- **Medium pT: Quark Number Scaling of v² → Quark Recombination suggests this scaling.** \rightarrow *Entropy reduces in "n* \rightarrow *1" process!*
- **Low pT: Strong Elliptic Flow** \rightarrow **Hydrodynamics explains string rise of v₂ at low p_T.**
	- **→** *Results depends on the later stages.*

Signals are understood separately, and they are not necessarily consistent. → Further Ideas are required !

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 4 / 16

by Esumi, Matter03

Jet Quenching at RHIC (II)

Do we really see suppression of high energy particles at RHIC ? → **YES** for Au+Au Collisions, **and NO for d+Au Collisions !**

$$
R_{AB}(p_T) = \frac{d^2N/dp_T d\eta}{T_{AB} d^2 \sigma^{pp}/dp_T d\eta}
$$

d + Au: Initial State Effects

High Energy Particles are suppressed in Au + Au Collisions but NOT suppressed in d + Au Collisions at RHIC compared to p+p collisions !

Hokkaido University
http://phys.sci.hokudai.ac.

Au + Au: Initial State + Final State Effects

A. Ohio 2006/1/31) p 5/16

Jet Quenching at RHIC (III)

STAR (nucl-ex/0306024)

Jet Energy Loss also lead to reduction of back-to-back correlation

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 6 / 16

by Esumi, Matter03

Low Momentum : Hydrodynamical calc. with Early Thermalization High Momentum : Reduction from Hydro. calc.

by Esumi, Matter03

Recombination Picture seems to work well ... Parton Elliptic Flow

How can we get large v² at high p^T ?

- **Essense in Quark Recombination Model → When two or three quarks make an object, that object will have an momentum anisotropy of their sum.** $f(\varphi) = (1 + 2 v_2(q) \cos \varphi) \times (1 + 2 v_2(q) \cos \varphi)$ *≈ 1 + 2* **x** *2 v² (q) cos φ*
- **Elliptic Flow of High pT particles is generated by the Energy Loss in QGP.**
	- **→ Larger Energy Loss gives Larger v²**

but they are not consistent with p_T spectrum.

Let's consider a possibility of New Hadronization Scheme to generate Larger v2 at high pT by combining the above two ideas !

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 9 / 16

Jet-Fluid String Formation and D on and Decay

- **Jet parton picks up a fluid parton to make a color singlet object. ↔ Independent Fragmentation (No explicit color flux specified)**
- **Color singlet string will break up into many (several) hadrons. → Entropy does not decrease. ↔ Quark Recombination**
- **Momenta of jet and fluid partons are positively correlated.**
	- \rightarrow **String will have large** p_T **and** v_2 **.**

Can we understand p_T *spectrum and* $v₂$ *consistently* ?

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 10 / 16

Model Details (1)

Model Components

- **(Mini-)Jet Production: Pythia**
- **Parton Energy Loss in QGP: GLV first order formula + 3D Hydrodynamics results**
- **String formation Prob.: Use parameterized form**
- **String Fragmentation: Pythia**

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 11 / 16

Model Details (2)

Relevant Model Parameters

Jet production: K-factor $\sigma_{jet} = K \sigma_{jet}^{pQCD(1st \text{ order})}$

 $(c.f. JAM \rightarrow K=3)$

$$
\frac{dE}{d\tau} = 3\pi \alpha_s^3 F_{\text{color}} C (\tau - \tau_0) \log(\frac{2 E_0}{\mu^2 L})
$$

(c.f. Hydro+Jet model C \approx **2.7)**

Parameterized String Formation Probability

$$
P(\sqrt{s})\in\Theta(\sqrt{s}-\sqrt{s_0})s^{-n/2}
$$

(This should be evaluated by pQCD matrix element + string level density) Current Choice: \sqrt{s} ⁰ = 1.0 **GeV**, **n** = 1

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 12 / 16

K-factor

K-factor \rightarrow **absolute value** of σ_{jet}

Experimental Data: $pp \rightarrow \pi$ ⁰ $@$ $\sqrt{s_{_{NN}}}$ = 200 GeV (PHENIX) \blacksquare

$$
\frac{\partial^2 f}{\partial x^2} = K \frac{\partial^2 f}{\partial x \partial y} \frac{d^2 \theta^{exp}}{dx^2} \frac{d^2 N^{pQCD(Ist)}}{dx^2} \frac{d^2 N^{pQCD(Ist)}}{dx^2} = A = K \frac{\partial^{pQCD(Ist)}}{\partial x^2}
$$

σ Exp. = 21.8 mb (trigger) σ $pQCD(1st) = 9.9$ mb

- **pythia6.3 fit:** $A \approx 0.8 \rightarrow K = 1.8$ $(\sigma_{\text{jet}}^{\text{hard}} > 2 \text{GeV/c}) \approx 17.5 \text{ mb})$
- **pythia6.2 fit:** $A \approx 0.9 \rightarrow K=2.0$ $(\sigma_{\text{jet}} \approx 19.6 \text{ mb})$

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 13 / 16

Energy Loss Factor (1)

- $\mathbf{Additional}$ Factor for Energy Loss \rightarrow High \mathbf{p}_{T} hadron yield
- **Exp.** Data: p_T spectra of π in Au+Au (PHENIX,STAR)

$$
\frac{d^2 N^{Exp.}}{2 \pi p_T d p_T d y} = N_{jet} \frac{1}{N_{jet}} \frac{d^2 N^{JFS}(C)}{2 \pi p_T d p_T d y}
$$

 \rightarrow **Determining N**_{iet} is important ! **Ncoll = 373 @ b=7.4 fm (PHENIX estimate)** σ^{NN} _{jet} = 17.5 **mb** (pp fit pythia 6.3), σ^{NN} _{tot} = 47. 4 **mb** (JAM)

$$
N_{jet} = \sigma_{jet}^{NN} \int d^2 r_T T_A (r_T + b/2) T_B (r_T - b/2) = \frac{\sigma_{jet}^{NN}}{\sigma_{tot}^{NN}} N_{coll}
$$

$$
T_A (r_T) = \int dz \rho(r_T, z)
$$

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 14 / 16

Energy Loss Factor (2)

Comparison with pion pT spectrum in Au+Au @ RHIC Ind. Frag.: $C \approx 3$, **JFS:** $C > 8$ **→ Large Energy Loss is allowed in JFS**

Division of Physics Jokkaido Universit

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 15 / 16

Elliptic Flow

JFS with large energy loss factor, C → Enhanced Elliptic Flow (~ 10 %) is generated even at high p_T **(** ~ 10 **GeV/c).**

Independent Frag. \rightarrow **v**₂ \sim 5 % **at high pT**

Division of Physics Hokkaido Hniversit

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 16 / 16

Combined with Low p_r spectrum

Low pT spectrum is assumedand combined. $F^{Hyd}(p_T) = A \exp(-p_T/T)(1 + B/(1 + (p_T/p_0)^8))$ v_2^{Hyd} (p_T) = 0.13 p_T

Division of Phy Hokkaido Universit

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 17 / 16

Discussion

Mechanism to produce high p_{T} hadrons in JFS

- **Jet and Fluid partons are correlated in momentum** \rightarrow large transverse VELOCITY (p_T) of formed Strings
- **Relative momentum is relatively small** \rightarrow Smaller number of hadrons with high $\mathbf{p}_{\rm T}^{}$ are formed
- \leftrightarrow **Independent Frag.** (Large no. of Low p_T hadrons)
- **Allowed large energy loss and Momentum anisotropy correlation of jet-fluid** makes **v**₂ larger.

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 18 / 16

- **A new mechanism to produce high pT hadrons (Jet-Fluid String formation and decay) is proposed.**
	- **This would be better than Indep. Frag. where Energy-Momentum conservation is satisfied only in average.**
	- **Low pT hadrons are suppressed than in Indep. Frag.**
	- **Entropy does not decrease, but increases.**
- When we FIT p_T spectrum (roughly), large v_2 is found to be **generated.**
	- **Easy to form high** \mathbf{p}_{T} **hadrons, and then large energy loss is** requred to explain p_{T} spectrum data.
	- **Momentum anisotropy correlation of jet-fluid is expected to help.**

Further Problems

- Very large energy loss is required to explain p_T spectrum.
	- **C > 8 in JFS ↔ C ≈ 2.7 in Hydro+Jet model (Hirano-Nara)**

Is it possible to justify this large energy loss ?

- **Elliptic flow at medium pT is underestimated. → Fluid-Fluid String would be necessary to consider.**
- **Large baryon yield at medium pT may not be explained. → Three parton string ? (Jet-Fluid-Fluid, Fluid-Fluid-Fluid)**
- **String formation probability should be evaluated in pQCD matrix element + string level density. → Yoshino's Master thesis ?**
- **and Many.**

High-Energy Heavy-Ion Collision Experiments

Heavy-ion physisists wanted to create QGP for a long time ...

LBL-Bevalac: 800 A MeV GSI-SIS: 1-2 A GeV BNL-AGS (1987-): 10 A GeV CERN-SPS (1987-): 160 A GeV BNL-RHIC (2000-): 100+100 A GeV CERN-LHC (2007(?)-): 3 + 3 A TeV

Division of Physic

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 21 / 16

1998 (J. Stachel et al.) 2002 (Braun-Munzinger et al.
 1998 (J. Stachel et al.) 1998 (2002) 1971 **J. Phys. G28 (2002) 1971.)**

Chem. Freeze-Out Points are very Close to Expected QCD Phase Transition Boundary

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 22 / 16

Theoret Theoretically Expected QCD Phase Diagram

Zero Chem. Pot. Finite Chem. Pot.

JLQCD Collab. (S. Aoki et al.), Nucl. Phys. Proc. Suppl. 73 (1999) 459.

Finite μ : Fodor & Katz, JHEP 0203 (2002), 014.

Zero Chem. Pot. : Cross Over Finite Chem. Pot.: Critical End Point

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 23 / 16

Elliptic Flow (I)

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 24 / 16

Elliptic Flow (II)

Hydro+Jet

(Hirano and Nara)

What is the Origin of Elliptic Flow ?

- **Hydrodynamics**
- **Jet Energy Loss**
- **Coalescence**

Fragmentation & Recombination Fries, Nonaka, ...

 $f(\boldsymbol{\phi}) \approx f_1(\boldsymbol{\phi}) f(\boldsymbol{\phi})$ \propto $(1+2v_2\cos\phi)\times(1+2v_2\cos\phi)$ $=$ **1** + **2** \times **2** v_2 **cos** ϕ

ision of Phvsic

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 25 / 16

Hydro + Jet Model (Hirano and Nara)

Division of Physics Hokkaido University

SEE ON

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 26 / 16

Fragmentation and Recombination

(Duke U. Group)

Recombination Enhances Intermed. P_T **Hadrons and Baryon V₂.**

Fries et al. PRL 90 (2003), 202303, Nonaka et al., nucl-th/0308051

Division of Physics Hokkaido University

A. Ohnishi, JFS (Colloquium, 2006/1/31) p 27 / 16