Fundamental and Phenomenological Approaches to High Density Hadronic Matter

Akira Ohnishi in Collaboration with N. Kawamoto, K.Miura, T.Ohnuma, K. Tsubakihara, M.Isse, Y.Nara, N.Otuka, P.K.Sahu, T. Hirano, K. Yoshino

- Introduction --- Approaches to High Density Matter
- Strong Couling Limit Lattice QCD (N. Kawamoto, K. Miura, AO, T. Ohnuma, hep-lat/051223)
- Chiral Symmetric RMF (K.Tsubakihara, AO, in preparation)
- Collective Flow in High-Energy Heavy-Ion Collisions (M.Isse, AO, N.Otuka, P.K.Sahu, Y.Nara, PRC72(2005),064908; T.Hirano, M.Isse, Y.Nara, AO, K. Yoshino, PRC72(2005),041901(R); P.K.Sahu,AO,M.Isse, N.Otuka, S.C.Phatak, submitted)
- Summary

Physics (a) J-PARC: High Density QCD \rightarrow How to attack it ?

A. Ohnishi, HFD06@YITP (2006/2/20-22)

Physics of Dense Matter

- **High** $T \rightarrow$ well studied theoretically and experimentally
 - Lattice QCD Monte-Carlo simulation / RHIC, SPS
- High Density Matter→ Interesting but Difficult in QCD
 - Exp't: FAIR(GSI), SPS(20-80 AGeV), AGS (10 A GeV)
 - Theor.: Weight becomes complex at finite μ in Lattice QCD
 → Model/Approximate approaches are necessary !
 - Monte-Carlo calc. of Lattice QCD (c.f. Ejiri's talk) Improved ReWeighting (Fodor-Katz) Taylor Expansion (Bielefeld U.) Analytic Continuation (de Forcrand-Philipssen),
 - Approximate / Model / Phenomenological Approaches: *Strong Coupling Limit of Lattice QCD* NJL (Hatsuda-Kunihiro, ...) Kaon/pion condensation (Lee, Muto, ...) *Relativistic Mean Field, HIC simulation*

ivision of Physics tuate School of Science caido University

N. Kawamoto, K. Miura, AO, T. Ohnuma, hep-lat/051223

Strong Coupling Limit of Lattice QCD

Chiral Restoration at μ=0.

- Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211
- Phase Diagram with Nc=3
 - Nishida, PRD69, 094501 (2004)

Previous Works in Strong Coupling Limit LQCD

Strong Coupling Limit Lattice QCD re-attracts interests c.f. Nakamura @ JHF Symp. for high density matter

Ref	Т	μ	Nc	Baryon	CSC	Nf
Damgaard-Kawamoto-Shigemoto('84)	Finite	0	U(Nc)	X	X	1
Damgaard-Hochberg-Kawamoto('85)	0	Finite	3	Yes	X	1
Bilic-Karsch-Redlich('92)	Finite	Finite	3	X	X	1~3
Azcoiti-Di Carlo-Galante-Laliena('03)	0	Finite	3	Yes	Yes	1
Nishida-Fukushima-Hatsuda('04)	Finite	Finite	2	Yes (*)	Yes (*)	1
Nishida('04)	Finite	Finite	3	X	X	1~2
Kawamoto-Miura-AO-Ohnuma('05)	Finite	Finite	3	Yes	Yes (+)	1

*: bosonic baryon=diquark in SU(2) +: analytically included, but ignored in numerical calc.

 Baryonic Composite will be important at High Densities, but they have been ignored in finite T treatments !
 → This work: Nc = 3, Baryonic Composite, Finite T and μ

Strong Coupling Limit without Baryonic Effects

Lattice Action (staggered fermion)

Z

- Spatial Link Integral
- Bosonization (HS transf.)
- Quark and U₀ Integral

Mesonic and Baryonic Composites

Tokkaido University

$$Strong Coupling$$

$$= \int \mathcal{D}[\chi, \bar{\chi}, U_0, U_1, U_2, U_3] \exp\left[-S_F^{(U_0)} - \sum_{j=1}^3 S_F^{(U_j)} - S_F^{(m)}\right]$$

$$\simeq \int \mathcal{D}[\chi, \bar{\chi}, U_0] \exp\left[\frac{1}{2}(M, V_M M) + (P, V_B B) - S_F^{(U_0)} - S_F^{(m)}\right]$$

$$\simeq \int \mathcal{D}[\chi, \bar{\chi}, U_0, \sigma] \exp\left[-\frac{1}{2}(\sigma, V_M^{-1}\sigma) - (\sigma, M) - S_F^{(U_0)} - S_F^{(m)}\right]$$

$$\simeq \int \mathcal{D}[\sigma] \exp\left[-\frac{1}{2}a_\sigma\sigma^2\right] \underbrace{\prod_x \int dU_0 \text{ Det } [G^{-1}(\sigma)]}_{\exp\left[-L^3\beta F^q(\sigma)\right]}$$

$$\simeq \exp\left[-L^3\beta F_{\text{eff}}(\sigma)\right]$$

$$M(x) = \delta_{ab}\bar{\chi}^a(x)\chi^b(x) ,$$

$$B(x) = \frac{1}{6} \varepsilon_{abc} \chi^a(x) \chi^b(x) \chi^c(x) , \quad \bar{B}(x) = \frac{1}{N_c!} \varepsilon_{abc} \bar{\chi}^c(x) \bar{\chi}^b(x) \bar{\chi}^a(x)$$

7/28

Decomposition of Baryonic Composite Action

Introducing Auxiliary Baryon Field

$$\exp(\bar{B}, V_B B) = \det V_B \int \mathcal{D}[\bar{b}, b] \exp\left[-(\bar{b}, V_B^{-1} b) + (\bar{b}, B) + (\bar{B}, b)\right]$$

Decomposition of coupling of baryon and 3 quarks with Diquark Composite (Azcoit et al., JHEP 0309, 014 (2003))

$$\bar{b}B = \underbrace{\bar{b}\chi^{a}}_{\text{antibaryon-quark}} \times \underbrace{\chi^{b}\chi^{c}}_{\text{diquark}} \times \varepsilon_{abc}/6} D^{\dagger}D \text{ makes } \overline{b}B$$

$$D_{a} = \underbrace{\frac{\gamma}{2}}_{\varepsilon_{abc}} \underbrace{\chi^{b}\chi^{c}}_{+} + \frac{1}{3\gamma} \overline{\chi}^{a}b, \quad D_{a}^{\dagger} = \frac{\gamma}{2} \varepsilon_{abc} \overline{\chi}^{c} \overline{\chi}^{b} + \frac{1}{3\gamma} \overline{b}\chi^{a}$$

$$\exp(\bar{b}B + \bar{B}b) = \int d[\phi_{a}, \phi^{\dagger}_{a}] \exp\left[-\phi^{\dagger}_{a}\phi_{a} + (\phi^{\dagger}_{a}D_{a} + D^{\dagger}_{a}\phi_{a}) - \frac{\gamma^{2}}{2}M^{2} + M\bar{b}b/9\gamma^{2}\right]$$

$$\underbrace{\overline{B}b + \overline{b}B - D^{\dagger}_{a}D_{a}}$$
Effective Action is not yet bilinear in fermions

Effective Action is not yet bilinear in fermions * four fermi interaction terms, M² and Mbb * diquark-quark-antibaryon coupling

Bosonization of Four Fermi Interactions \blacksquare *Mbb* term \rightarrow Baryon potential auxiliary field ω $\exp(M\bar{b}b/9\gamma^2) = \int d[\omega] \exp\left[-\omega^2/2 - \omega(\alpha M + g_\omega \bar{b}b) - \alpha^2 M^2/2\right]$ • $(\overline{b}b)^2 = 0$ in One species of Staggered Fermion $\blacksquare M^2$ and $(M, V_M M)$ terms \rightarrow Chiral Condensate σ $\frac{1}{2}(M, V_M M) - \frac{1}{2}(\gamma^2 + \alpha^2)M^2 = \frac{1}{2}(M, \widetilde{V}_M M)$ $\exp\left|\frac{1}{2}(M,\widetilde{V}_M M)\right| = \int \mathcal{D}[\sigma] \exp\left[-\frac{1}{2}(\sigma,\widetilde{V}_M^{-1}\sigma) - (\sigma,M)\right]$

By absorbing "Mass" in the Hopping Term, We can replace both of the terms simultaneously !

Effective Action in bilinear form of Fermions !

Effective Free Energy at Zero Diquark Condensate

Effective Action

Zero Diquark Condensate

$$S_{F} = (\bar{b}, \tilde{V}_{B}^{-1}b) + \frac{1}{2}(\omega, \omega) + \frac{1}{2}(\sigma, \tilde{V}_{M}^{-1}\sigma) + (\sigma_{q}, M) + S_{F}^{(U_{0})} + S_{F}^{(m)} + (\phi^{\dagger}, \phi) + \frac{1}{3\gamma} \left[(\bar{\chi}^{a}, \phi^{\dagger}_{a}b) + (\bar{b}\phi_{a}, \chi^{a}) \right] + \frac{\gamma}{2} \varepsilon_{cab} \left[(\phi^{\dagger}_{c}, \chi^{a}\chi^{b}) + (\bar{\chi}^{b}\bar{\chi}^{a}, \phi_{c}) \right]$$

After Quark, U₀, Baryon Integral at zero diquark cond.

$$\mathcal{F}_{\text{eff}} = \frac{1}{2}a_{\sigma}\sigma^{2} + \frac{1}{2}\omega^{2} + F_{\text{eff}}^{(b)}(g_{\omega}\omega) + F_{\text{eff}}^{(q)}(\sigma_{q}) \quad a_{\sigma} = \left[\frac{d}{2N_{c}} - (\gamma^{2} + \alpha^{2})\right]^{-1}$$

and adopting convenient parameters (γ and ω are removed),

we get an analytical expression of **Effective Free Energy**

$$\mathcal{F}_{\text{eff}}(\sigma_q) \;=\; \frac{\sigma_q^2}{2\alpha^2} + F_{\text{eff}}^{(b)}(g_\sigma \sigma_q) + F_{\text{eff}}^{(q)}(\sigma_q;T,\mu)$$

A. Ohnishi, HFD06@YITP (2006/2/20-22)

Effective Free Energy with Baryonic Effects

Effective Free Energy

$$\mathcal{F}_{\text{eff}}(\sigma_q) = \frac{\sigma_q^2}{2\alpha^2} + F_{\text{eff}}^{(b)}(g_{\sigma}\sigma_q) + F_{\text{eff}}^{(q)}(\sigma_q;T,\mu)$$

Baryons Gain Free Energy \rightarrow Extention of Hadron Phase to Larger μ !

A. Ohnishi, HFD06@YITP (2006/2/20-22)

Small Critical µ : Common in SCL-LQCD ?

Strong Coupling Limit

- Damgaard, Hochberg, Kawamoto ('85):
 μ_R^c(0)/T_c(0)~ 1.6 (T=0, T≠0)
- T≠0, No B: µ_B^c(0)/T_c(0) ~ 1.0 (Nishida2004, Bilic et al 1992(Bielefeld),)
- Present: $\mu_B^c(\theta)/T_c(\theta) < 1.5$ (Parameter dep.)
- Monte-Carlo: $\mu_B^c(\theta)/T_c(\theta) >> 1$
 - Fodor-Katz, Bielefeld, de Forcrand-Philipsen,
- Real World: $\mu_B^c(\theta)/T_c(\theta) > 7$

12 / 28

Towards Realistic Understanding

- "Reality" Axis
 - Strong Coupling Limit $\rightarrow 1/g^2$ corrections \rightarrow Smaller T_c
 - Number of Flavors $\rightarrow 2(ud)+1(s) \rightarrow Smaller T_c$
 - Chiral Limit \rightarrow Finite $m_q \rightarrow$ Larger μ_c

K. Tsubakihara and AO, in preparation.

RMF with Chiral Symmetry

- Good Sym. in QCD, and Spontaneous breaking generates hadron masses.
- Schematic model: Linear σ model

$$L = \frac{1}{2} \Big(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \partial^{\mu} \pi \Big) - \frac{\lambda}{4} \Big(\sigma^{2} + \pi^{2} \Big)^{2} + \frac{\mu^{2}}{2} \Big(\sigma^{2} + \pi^{2} \Big) + c \sigma$$
$$+ \overline{N} i \partial_{\mu} \gamma^{\mu} N - g_{\sigma} \overline{N} \Big(\sigma + i \pi \tau \gamma_{5} \Big) N$$

- Many Problems
 - χ Sym. is restored at a very small density. σω Coupling stabilizes normal vacuum, but gives too stiff EOS. (Boguta PLB120,34, Ogawa et al. PTP111(2004)75)
 - Loop effects (N.K. Gledenning, NPA480,597; M. Prakash and T. L. Ai nsworth, PRC36, 346; Tamenaga et al.)
 - Higher order terms (Hatsuda-Prakashi 1989, Sahu-Ohnishi, 2000)
 - Dielectric Field (Papazoglou et al. (Frankfurt), 1998)

Problems in RMF with Chiral Symmetry

Sudden Change of <σ>

ε (m_σ=600 MeV, ρ_B=0-5 ρ₀)

• $\sigma \omega$ Coupling $L_{\omega\sigma} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} C_{\sigma\omega} \sigma^2 \omega^2 - g_{\omega} \overline{N} \gamma_{\mu} \omega^{\mu} N$ $\omega = g_{\omega} \rho_B / C_{\sigma\omega} \sigma^2 \rightarrow V_{\sigma\omega} = \frac{g_{\omega}^2 \rho_B^2}{2C_{\sigma\omega} \sigma^2}$

Stiff EOS

ε (m_σ=783 MeV, ρ_B=0-5 ρ₀) EOS 150 1400 Boguta Boguta 200 (MeV/fm⁻³) SO '00 100 1000 E/A (MeV) NJL-Bog. 800 TM1 50 600 400 0 200 0 -50 50 100 150 0 0.2 0.4 0.6 0 σ (MeV) ρ_B (fm⁻³)

A. Ohnishi, HFD06@YITP (2006/2/20-22)

RMF with σ Self Energy from SCL-LQCD

σ Self Energy from simple Strong Coupling Limit LQCD

$$S \rightarrow -\frac{1}{2}(M, V_M M) \quad (1/d \text{ expansion})$$

$$\rightarrow b\sigma^2 + (\bar{\chi} \ \sigma \chi) \quad (\text{auxiliary field})$$

$$\rightarrow b\sigma^2 - a \log \sigma^2 \quad (\text{Fermion Integral})$$

- RMF Lagrangian Non-Analytic Type σ Self Energy
 - σ is shifted by f_{π} , and small explicit χ breaking term is added.

$$\mathcal{L} = \bar{\psi} \left(i\gamma^{\mu} \partial_{\mu} - \gamma^{\mu} V_{\mu} - M + g_{\sigma} \sigma \right) \psi + \mathcal{L}_{\sigma}^{(0)} + \mathcal{L}_{\omega}^{(0)} + \mathcal{L}_{\rho}^{(0)}$$
$$-U_{\sigma} + \frac{\lambda}{4} (\omega_{\mu} \omega^{\mu})^{2}$$
$$U_{\sigma}(\sigma) = 2a f \left(\sigma / f_{\pi} \right), \quad f(x) = \frac{1}{2} \left[-\log\left(1 + x\right) + x - \frac{x^{2}}{2} \right], \quad a = \frac{f_{\pi}^{-2}}{2} \left(m_{\sigma}^{2} - m_{\pi}^{2} \right)$$

Nuclear Matter and Finite Nuclei

- **a** Nuclear Matter: By tuning λ , $g_{\omega N}$, m_{σ} , *EOS can be Soft !*
- Finite Nuclei: By tuning g_{ρN}, Global behavior of B.E. is reproduced, except for j-j closed nuclei (C, Si, Ni).

18 / 28

Extention to Chiral SU(3)

Strong Coupling Limit LQCD guess

 $F_{eff} = b Tr(M^+M) - a \log det(M^+M) - c_{\sigma}\sigma - c_{\zeta}\zeta + d(det M^+ + det M)$

Bosonization + Quark integral + Explicit breaking + $U_A(1)$ anomaly

$$M = \Sigma + i \Pi = diag(\sigma/\sqrt{2}, \sigma/\sqrt{2}, \zeta)(in MFA)$$

$$\begin{bmatrix} 1 & m^2 & m^2 \\ m^2 & m^2$$

$$a \left[2f\left(\sigma/f_{\pi}\right) + \frac{1}{2}f\left(\zeta/f'_{\zeta}\right) \right] + \frac{m_{\sigma}}{2}\sigma^{2} + \frac{m_{\zeta}}{2}\zeta^{2} + \xi\sigma\zeta + const.$$

(after shifting $\sigma \rightarrow f_{\pi} + \sigma, \zeta \rightarrow f_{\zeta} + \zeta$)

$$f(x) = \frac{1}{2} \left[-\log(1+x) + x + \frac{x^{2}}{2} \right], \quad a = \frac{f_{\pi}^{2}}{2} \left(m_{\sigma}^{2} - m_{\pi}^{2} \right)$$

most of the parameters are determined to fit meson masses ! \rightarrow One parameter m_{σ}

s it consistent with Nuclear Matter and Finite Nuclei?

Symmetric Nuclear Matter in Chiral SU(3) RMF

Soft EOS in Chiral SU(3) RMF

- σ - ζ mixing \rightarrow Evolution along σ - ζ valley
- K= 216 MeV @ m_{σ} = 690 MeV \rightarrow Consistent with K=210 ± 30 MeV

A. Ohnishi, HFD06@YITP (2006/2/20-22)

Finite Nuclei

9

8

7

6

5

B.E./A(MeV)

Si

 $m_{\sigma} = 690$

Ca^{Ni} Zr

5

Sn

- Other Model Parameters
 - $g_{\rho N} \rightarrow Normal Nuclei$
 - $(g_{\sigma\Lambda}, g_{\zeta\Lambda}) \rightarrow \text{Single } \Lambda \text{ Nuclei}$
 - $g_{\zeta\Lambda} \rightarrow {}^{6}_{\Lambda\Lambda}He$ (SU_V(3) is assumed for $g_{V\Lambda}$)

A. Ohnishi, HFD06@YITP (2006/2/20-22)

21 / 28

Pb

Si

Collective Flow in High-Energy Heavy-Ion Collision

"Mean-field effects on collective flow" in high-energy heavy-ion collisions at 2-158A GeV energies" <u>M. Isse</u>, A. Ohnishi, N. Otuka, P. K. Sahu, Y. Nara, Phys. Rev. C, Phys. Rev. C 72, 064908 (2005).

ハドロン輸送模型による高エネルギー重イオン衝突での 核物質状態方程式とクォーク・グルーオン・プラズマの探求 第19回北海道原子核理論研究会「江別'05」(平成18年2月10日)

北海道大学大学院理学研究科 物理学専攻 D3

一湅		嗣
••••••	•	

本研究は、以下三論文に基づいています。

(1) "Mean-field effects on collective flow in high-energy heavy-ion collisions at 2-158A GeV energies"

<u>M. Isse</u>, A. Ohnishi, N. Otuka, P. K. Sahu, Y. Nara, Phys. Rev. C, Phys. Rev. C 72, 064908 (2005).

(2) "Hadron-string cascade versus hydrodynamics in Cu+Cu collisions at $\sqrt{s_{NN}}=200 \text{ GeV}''$

T. Hirano, <u>*M. Isse*</u>, *Y. Nara*, *A. Ohnishi*, *K. Yoshino*, *Phys. Rev. C* 72, 041901(*R*) (2005).

(3) "Elliptic Flow in a Hadron String Cascade Model at 130 GeV Energy" P. K. Sahu, A. Ohnishi, <u>M. Isse</u>, N. Otuka, S. C. Phatak, Submitted to Pramana — Journal of Physics (Indian Academy of Science).

by Isse

Can we determine Nuclear EOS from Collective Flow ?

Example: P. Danielewicz et al., Science 298,1592(2002)

- SIS ~ AGS Energies (0.1~11 A GeV) \rightarrow We need Mean Field
- With one value of K, we cannot explain v_1 and v_2 simultaneously.
- \rightarrow EOS is not yet determined !

Flow study from AGS to SPS in JAM-RQMD/S

- EOS (or K) cannot be uniquly determined at $E_{inc} < 11 A$ GeV → Higher density may be achieved at higher E_{inc} .
- Hadronic Transport Model JAM-RQMD/S
 - JAM: Particle DOF and Cross sections (Nara et al., 2000)
 - RQMD/S:

Constraint Hamiltonian Dynamics + Simplified Time-Fixation (Sorge et al., Maruyama, 1998)

Nuclear Mean Field:

Momentum Dep. Hard/Soft (MH, MS) Momentum Indep. Hard/Soft (H, S) Common MF for All Baryons (B) / MF only for Nucleons (N)

First Explore in Collective Flows at SPS with MF Effects

of Physics A. noi of Science A. niversity ibokudai.ac.ip/

A. Ohnishi, HFD06@YITP (2006/2/20-22)

by Isse

Comparison of Hadronic Transport Models

Model	Res. DOF	Rel. desc. of MF	Mom. Dep. MF	Flow @ AGS	Flow @ SPS	Flow @ RHIC
RQMD(1989)	0	0	×	0	Δ	Δ
RBUU(1994)	0	0	0	0	?	?
UrQMD(1996)	0	0	×	0	Δ	Δ
HSD(1996)	Δ	Δ	0	0	Δ	?
BEM(2000)	Δ	Δ	Ø	Ø	×	×
JAM+RQMD/S	0	0	0	0	0	Δ

Incident Energy Deps. of V₂

- JAM-MF with momentum dep. MF explains proton v₂ at 1-158 A GeV energies
- v₂ is not very sensitive to K (incompressibility)
- Data lies between MS(B) and MS(N)
- Results with H ~ UrQMD (S.Soff et al., nucl-th/9903061)

by Isse

Summary

- High Density Matter is interesting and important, but it requires various approaches at present.
- In the strong coupling limit of lQCD, baryons would modify the phase boundary at high density and low T.
 - Dependence on parameters introduced through bosonization identities.
- By using a QCD motivated σ self-energies, we can construct chiral symmetric RMF giving soft EOS.
 - Neutron Star / Pion & Kaon mass in dense matter.
- Collective flow data upto SPS are qualitatively explained in hadronic transport model with mom. dep. MF.
 - K (incompressibility) cannot be uniquely determined yet.
 - Model deps., especially MF during formation time / for Res.

Proton v₂ vs y @ SPS

Momentum dependent MF well suppress the proton v2. Large uncertainty for analysis method at 40 AGeV. We see standard v2 are wrong but good agreement to 2nd cumulant v2 at mid-rapidity. by Isse

Color Angle Average

- Problem: Diquark Condensates induce quark-baryon coupling, and Baryon integral becomes difficult.
 Solution: Color Angle Average
 - Integral of "Color Angle Variables"

$$\int \mathcal{D}[\phi_a, \phi_a^{\dagger}] \exp\left\{\phi_a^{\dagger} D_a + D_a^{\dagger} \phi_a\right\} = \int \mathcal{D}[v] \exp\left\{\frac{v^2}{3} D_a^{\dagger} D_a + \frac{v^4}{162} M^3 \overline{b}b\right\}$$

Three-Quark and Baryon Coupling is ReBorn !

$$D_a^{\dagger} D_a = Y + \bar{b}B + \bar{B}b$$
, $Y = \frac{\gamma^2}{2}M^2 - \frac{1}{9\gamma^2}M\bar{b}b$

Solve "Self-Consistent" Equator

$$\exp(\bar{b}B + \bar{B}b) \simeq \exp\left[-v^2 - Y + \frac{v^2}{3}(\bar{b}B + \bar{B}b + Y) + \frac{v^4}{162}M^3\bar{b}b\right]$$
$$\simeq \exp\left[-\frac{v^2}{R_v} + \frac{v^4M^3\bar{b}b}{162R_v} - Y\right] \quad (R_v = 1 - v^2/3)$$

of Sčience /**ersity** kudai.ac.jp/

Effective Free Energy with Diquark Condensate

Bosonization of $M^k \overline{b} b \rightarrow$ Introduce k bosons

$$\exp M^{k}\overline{b}b = \int d\omega_{k} \exp\left[-\frac{1}{2}(\omega_{k} + \alpha_{k}M + 1/\alpha_{k}M^{k-1}\overline{b}b)^{2} + M^{k}\overline{b}b\right]$$
$$= \int d\omega_{k} \exp\left[-\omega_{k}^{2}/2 - \omega(\alpha_{k}M + 1/\alpha_{k}M^{k-1}\overline{b}b) - \alpha_{k}^{2}M^{2}/2\right]$$

Effective Free Energy

$$\mathcal{F}_{\text{eff}}^{(Tbv)} = F_X(\sigma, v, \omega_i) + F_{\text{eff}}^{(b)}(g_\omega \omega) + F_{\text{eff}}^{(q)}(\sigma_q)$$

$$F_X = \frac{1}{2}(a_\sigma \sigma^2 + \omega^2 + \omega_1^2 + \omega_2^2) + \frac{v^2}{R_v} \quad g_\omega = \frac{1}{9\alpha\gamma^2} \left[1 + \frac{\gamma^2 v^4 \omega_1 \omega_2}{18\alpha_1 \alpha_2 R_v} \right]$$

$$a_\sigma = \left(\frac{1}{2} - \gamma^2 - \alpha^2 - \alpha_1^2 - \alpha_2^2 \right)^{-1} \quad \sigma_q = \sigma + \alpha\omega + \alpha_1 \omega_1 + \alpha_2 \omega_2$$

Similar form to the previous one at v=0. Diquark Effects in interaction start from v^4 .

A. Ohnishi, HFD06@YITP (2006/2/20-22)

Nuclear Matter

• Satulation property 等の計算結果

2011年2月4日

JPS-04 spring at Noda, Tokyo University of Science

Comparison with Other Treatments

T=0, without or with baryons
 (e.g., NK-Smit1981, Damgaard-Hochberg-NK 1985)

$$\mathcal{F}_{\text{eff}}^{(0)} = \frac{N_c \sigma^2}{d+1} - N_c \log \widetilde{\sigma} \qquad \mathcal{F}_{\text{eff}}^{(0\text{b})} = \frac{N_c \sigma^2}{d+1} + F_{\text{eff}}^{(b\mu)}(4\widetilde{\sigma}^3; T, \mu)$$

- * **T=0, with b and diquark (ACGL2002)** $\Theta = \frac{1}{3} \left(R_v^2 \frac{R_v \tilde{\sigma}^2}{\gamma^2} + \frac{2}{9} v^2 \right) ,$ $\mathcal{F}_{\text{eff}}^{(\text{Obv})} = \frac{N_c \sigma^2}{d+1} + v^2 - \log \Theta + F_{\text{eff}}^{(b\mu)}(m;T,\mu) \quad m = \frac{4\tilde{\sigma} \left(3\gamma^2 R_v - \tilde{\sigma}^2 \right)}{\Theta}$
- * **T** \neq **0**, no baryons (e.g., Nishida2004) $\mathcal{F}_{\text{eff}}^{(T)} = \frac{N_c \sigma^2}{d} + F_{\text{eff}}^{(q)}(\tilde{\sigma})$
- Fixing asymptotic behavior $\rightarrow F^{(Tb)}$ is smaller

$$\mathcal{F}_{\rm eff}^{(Tb)}(\lambda = \sigma_q/\alpha) \to \frac{\lambda^2}{2} - N_c \log \lambda + F_{\rm eff}^{(b)}(g_\omega \alpha \lambda)$$

A. Ohnishi, HFD06@YITP (2006/2/20-22)

QCD Phase Diagram from Lattice QCD

Zero Chem. Pot.

Finite Chem. Pot.

JLQCD Collab. (S. Aoki et al.), Nucl. Phys. Proc. Suppl. 73 (1999), 459. Fodor & Katz, JHEP 0203 (2002), 014.

Zero Chem. Pot. : Cross Over Finite Chem. Pot.: Critical End Point

Lattice Action in SCL-LQCD (1)

Lattice Action with staggered Fermions

In the Strong Coupling Limit (g → ∞), we can ignore SG, and semi-analytic calculation becomes possible.

Details of Functions

$$\begin{split} \sigma_q &= \sigma + \alpha \omega \\ \widetilde{V}_B^{-1}(x, y) &= V_B^{-1}(x, y) + g_\omega \omega \delta_{x, y} , \quad g_\omega = \frac{1}{9\alpha\gamma^2} \\ F_{\text{eff}}^{(b)}(g_\omega \omega) &= \frac{1}{\beta L^3} \log \operatorname{Det} \left[1 + g_\omega \omega V_B \right] = -\frac{1}{2L^3} \sum_{\mathbf{k}} \log \left[1 + \frac{g_\omega^2 \omega^2 s^2}{16} \right] \simeq -a_0^{(b)} f^{(b)} \left(\frac{g_\omega \omega \Lambda}{4} \right) \\ f^{(b)}(x) &= \frac{3}{2x^3} \int_0^x k^2 dk \log(1 + k^2) \\ F_{\text{eff}}^{(q)}(\sigma_q) &= -T \log \left[\frac{4}{3} \left(C_\sigma^3 - \frac{1}{2} C_\sigma + \frac{1}{4} C_{3\mu} \right) \right] \\ F_{\text{eff}}^{(q)}(\sigma_q) &= -T \log \left\{ \frac{\sinh[(N_c + 1)E/T]}{\sinh[E/T]} + 2 \cosh N_c \mu \right\} \\ \mathcal{F}_{\text{eff}} &= \frac{1}{2} a_\sigma \sigma^2 + \frac{1}{2} \omega^2 + F_{\text{eff}}^{(b)}(g_\omega \omega) + F_{\text{eff}}^{(q)}(\sigma_q) \\ \gamma^2 + \alpha^2 &= \frac{1}{2} - \epsilon \quad (\epsilon \to +0 \ , \quad a_\sigma \to +\infty) \\ \mathcal{F}_{\text{eff}}(\sigma_q) &= \frac{\sigma_q^2}{2\alpha^2} + F_{\text{eff}}^{(b)}(g_\sigma \sigma_q) + F_{\text{eff}}^{(q)}(\sigma_q; T, \mu) \end{split}$$

A. Ohnishi, HFD06@YITP (2006/2/20-22)

Several Analytic Results / Comparison

- Critical Temperature
 - $T_c(0) = T_c^{(2\mathrm{nd})}(\mu = 0) = \frac{5}{3b_\sigma}$

b_{$$\sigma$$} = curvature of $\frac{\sigma_q^2}{2\alpha^2} + F_{\text{eff}}^{(b)}(g_\sigma \sigma_q)$

2nd order critical µ

$$\mu_c^{(\text{2nd})}(T) = \frac{T}{3} \cosh^{-1}\left(\frac{3T_c(0)}{T} - 2\right)$$

- same as Nishida, 2004
- TriCritical Point

$$\frac{T_{\text{TCP}}}{T_c(0)} = \frac{41}{25} \left[1 + \sqrt{1 + \frac{164}{625}} T_c^2(0) \left(5 + 9T_c(0) c_4^{(b)} \right) \right]^{-1}$$

• $\mathbf{C_4}^{(b)} = \text{coef. of } \sigma^4 \text{ in } \frac{\sigma_q^2}{2\alpha^2} + F_{\text{eff}}^{(b)}(g_\sigma \sigma_q)$

- DKS1984 Tc=5/2 (U(3)) Nishida2004 Tc=5/3 (SU(3) Bilic et al. Tc~ 2.5 (f=1), 2.0 (f=3)
 - Why we have $d\mu_c^{(1st)}/dT_c = d\mu_c^{(2nd)}/dT_c$

$$F_{eff} = c_2 \sigma^2 + c_4 \sigma^4 + c_6 \sigma^6$$

$$\rightarrow 4 c_2 c_6 = c_4^2$$

$$\rightarrow c_2 \simeq 0 \quad around \quad T_{tcp}$$

37/28

Debate ?

Tc(μ) smoothly goes down or not.

- a de Forcrand-Philipsen
 → Analytic Continuation predicts smooth decrease.
- Fodor-Katz

 → at TCP, the phase
 boundary seems to have a kink
- Why we have dµ_c^(1st)/dT_c=dµ_c^(2nd)/dT_c → kink at TCP may suggest the exsitence of other order parameter(s)

de Forcrand et al., NPB673,170(2003)

$$F_{eff} = c_2 \sigma^2 + c_4 \sigma^4 + c_6 \sigma^6$$

$$\rightarrow 4 c_2 c_6 = c_4^2$$

$$\rightarrow c_2 \simeq 0 \quad around \quad T_{tcp}$$

vision of Phy

lokkaido Universit

A. Ohnishi, HFD06@YITP (2006/2/20-22)

Experimentally Estimated Phase Diagram

1998 (J. Stachel et al.)

2002 (Braun-Munzinger et al. J. Phys. G28 (2002) 1971.)

Chem. Freeze-Out Points are very Close to Expected QCD Phase Transition Boundary

Division of Physics Graduate School of Science Hokkaido University A. Ohnishi, HFD06@YITP (2006/2/20-22)

Theoretically Expected QCD Phase Diagram

Zero Chem. Pot.

Finite Chem. Pot.

JLQCD Collab. (S. Aoki et al.), Nucl. Phys. Proc. Suppl. 73 (1999) 459.

Finite µ : Fodor & Katz, JHEP 0203 (2002), 014.

Zero Chem. Pot. : Cross Over Finite Chem. Pot.: Critical End Point

Division of Physics

Hokkaido Universit

A. Ohnishi, HFD06@YITP (2006/2/20-22)

Elliptic Flow (I)

details

 $\textbf{Lattice QCD action}_{F}^{(U_{j})} = \frac{1}{2} \sum_{x} \eta_{j}(x) \left[\bar{\chi}(x) U_{\mu}(x) \chi(x+\hat{\mu}) - \bar{\chi}(x+\hat{\mu}) U_{\mu}^{\dagger}(x) \chi(x) \right]$ $S_{F}^{(U_{0})} = \frac{1}{2} \sum_{x} \left[\bar{\chi}(x) e^{\mu} U_{\mu}(x) \chi(x+\hat{\mu}) - \bar{\chi}(x+\hat{\mu}) e^{-\mu} U_{\mu}^{\dagger}(x) \chi(x) \right]$ $S_{F}^{(m)} = m_{0} \sum_{x} \bar{\chi}^{a}(x) \chi^{a}(x) ,$

Mesonic and Baryonic Composites $M(x) = \delta_{ab} \bar{\chi}^a(x) \chi^b(x) ,$ $B(x) = \frac{1}{\epsilon} \varepsilon_{abc} \chi^a(x) \chi^b(x) \chi^c(x) , \quad \bar{B}(x) = \frac{1}{N_{-1}} \varepsilon_{abc} \bar{\chi}^c(x) \bar{\chi}^b(x) \bar{\chi}^a(x)$ **Fermion Integral** $\int \mathcal{D}[U_0, \chi, \bar{\chi}] \exp \left[-\sum_{i} \sigma M - S_F^{(U_0)}\right] = \int \mathcal{D}[U_0, \chi, \bar{\chi}] \prod_{i} \exp\left[-\bar{\chi}_k G(k)\chi_k/2\right]$ $= \cdots = C_{\sigma}^3 - \frac{1}{2}C_{\sigma} + \frac{1}{4}\cosh(3\beta\mu)$ $F_{\text{eff}}^{(q)}(\sigma_q) = -T \log \left| \frac{4}{3} \left(C_{\sigma}^3 - \frac{1}{2} C_{\sigma} + \frac{1}{4} C_{3\mu} \right) \right|$ $C_{\sigma} = \cosh \left[\beta \operatorname{arcsinh} \widetilde{\sigma}\right]$

A. Ohnishi, HFD06@YITP (2006/2/20-22)

JAM での mid-central での SPS と RHIC の比較では、 $v_2(\eta)$ の中心付近、 $v_2(p_{\tau})$ はほとんど同じ値を示す。

JAMでは、衝突初期の配置により v_2 のほとんどは決定されると考えられる。

by Isse

相対論的流体模型

 $\partial_{\mu}T^{\mu\nu} = 0$ エネルギー運動量保存 $\partial_{\mu}n_{\mu}u^{\mu} = 0$ カレントの保存 (baryon, strangeness,...)

e: エネルギー密度 **P**: 圧力 u^{μ:}:4元速度 □(1,v) *n*_i.:密度

$T^{\mu\nu} = (e+P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$

 τ_{α} , T^{ch}: Au+Auの dN/dηを fit, Tth: 可変

5本の独立な方程式 6個の独立変数 e,P,n,v

 $\tau = \sqrt{t^2 - z^2}$

(て,η_s,x,y)で解く。

 $\eta_{\rm s} = \frac{1}{2} \log \frac{t+z}{t-z} \frac{T. \, \text{Hirano, Y. Nara, Nucl. Phys. A743, 305 (2004)}}{T. \, \text{Hirano, K. Tsuda, Phys. Rev. C 66, 054905(2002)}}$

PHOBOS の講演より

Compared to JAM Model

Cu-Cu more like Hydro than JAM hadron string cascade model

Here JAM uses a 1 fm/c formation time. Hydro (160) has kinetic freezeout temperature at 160 MeV

■ **v**₂は、両模型の違いが顕著。

Division of Nuclear Phys ■ 流体模型でも Tth (⇔Freeze out の早さ) で違いがある。

by Isse

v₂(Centrality) @RHIC 200GeV, Au+Au

- カスケード模型 JAM は、 周辺衝突になるにつれて (図の左側)、小さくなっ てしまう。
- 実験値は、流体模型+カ スケードに CGC または Glauber 近似を仮定し たものの間に位置する。
- ⇒ 流体描像が妥当
- ⇒ 部分的に CGC

入射エネルギーごとのハドロンカスケードでの比較 (0-40%:central~mid-central) @RHIC 62,130,200GeV,Au+Au

ハドロンカスケードでの *v*₂は、入射エネルギーに よらず、ほぼ同じ値をと る。実験値には満たな い。

実験値にある、*v*2の微 増、[]'でのスケーリング は、得られない。

⇒ ハドロン相互作用起 源でない v₂の増加 (~QGP)

by Isse