Strong Coupling QCD Akira Ohnishi Hokkaido University, Sapporo, Japan → Strong Coupling Limit/Region of Lattice QCD

This talk is based on following Eprints

(1) Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) N. Kawamoto, K. Miura, A. Ohnishi, T. Ohnuma, hep-lat/0512023

(2) A chiral symmetric relativistic mean field model with logarithmic sigma potential K. Tsubakihara and A. Ohnishi, nucl-th/0607046

and I would like to add some preliminary results to get some ideas from YOU.

Division of Physics

Outline

- **Introduction**
- **Strong coupling limit lattice QCD with baryon effects**
- **1/g ² correction of Phase Diagram**
- **Chiral RMF with logarithmic σ potential** *(→ 3rd week Poster by Tsubakihara)*
- **Summary**

Quark and Hadronic Matter Phase Diagram

- **Dense quark & hadronic matter contains rich physics, but Lattice QCD simulation is not yet reliable.**
	- **→** *Model/Approximate approaches are necessary !*
	- **Monte-Carlo calc. of Lattice QCD: Improved ReWeighting Method (Fodor-Katz) Taylor Expansion in μ (Bielefeld-Swansea) Analytic Continuation (de Forcrand-Philipssen)**
		- **Model / Phen. Approaches: (P)NJL, QMC, RMF, ...**
		- *Strong Coupling Limit of Lattice QCD*

Strong Coupling Limit of Lattice QCD

Chiral Restoration at μ=0.

- **Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211**
- **Phase Diagram with Nc=3**
	- **Nishida, PRD69, 094501 (2004)**

Previous Works in Strong Coupling Limit LQCD

Strong Coupling Limit Lattice QCD re-attracts interests *c.f. Nakamura @ JHF Symp. for high density matter (2001)*

*: bosonic baryon=diquark in SU(2)

+: analytically included, but ignored in numerical calc.

Baryon effects have been ignored in finite T treatments ! → This work: Baryonic effects at Finite T (and μ) for SU c (3)

Strong Coupling Limit Lattice QCD

QCD Lattice Action

\n
$$
Z \approx \int D[X, \overline{X}, U] \exp\left[-\left(S_G + S_F^{(s)} + S_F^{(t)} + m_0 M\right)\right]
$$
\n
$$
S_G = \frac{1}{g^2} \sum_{x \mu v} \left[\text{Tr} U_{\mu v} + \text{Tr} U_{\mu v}^+ \right]
$$
\n
$$
S_F^{(s)} = \frac{1}{2} \sum_{x, j} \eta_j(x) \left(\overline{X}_x U_j(x) X_{x+j} - \overline{X}_{x+j} U_j^+(x) X_x\right)
$$
\n
$$
S_F^{(t)} = \frac{1}{2} \sum_x \left(e^{\mu} \overline{X}_x U_0(x) X_{x+\hat{0}} - e^{-\mu} \overline{X}_{x+\hat{0}} U_0^+(x) X_x\right)
$$

Strong Coupling Limit: g→∞

We can ignore $\mathbf{S}_{\mathbf{G}}$ and perform **one-link integral after 1/d expansion.**

$$
S_F^{(s)} \to -\frac{1}{2} (M V_M M) - (\overline{B} V_B B)
$$

$$
= -\frac{1}{4 N_c} \sum_{x, j>0} M_x M_{x+j} + \sum_{x, j>0} \frac{\eta_j}{8} \left[\overline{B}_x B_{x+j} - \overline{B}_{x+j} B_x \right]
$$

$$
U_j U_j^+
$$
\n
$$
M(x) M(x+j) O\n
$$
\overline{B} = \epsilon \overline{X} \overline{X} / 6 \overline{B} = \epsilon \overline{X} \overline{X} / 6 \overline{B} = \epsilon \overline{X} \overline{X} / 6 \overline{B}
$$
\n
$$
\int dU U_{ab} U_{cd}^+ = \frac{1}{N_c} \delta_{ad} \delta_{bc}
$$
\n
$$
\int dU U_{ab} U_{cd} U_{ef} = \frac{1}{6} \epsilon_{ace} \epsilon_{bd}
$$
$$

SCL-LQCD w/o Baryons

Damgaad-Kawamoto-Shigemoto 1984, Faldt-Petersson 1986, Bilic-Karsch-Redlich 1992, Nishida 2004,

Lattice Action (staggered fermion) in SCL

$$
Z \simeq \int D[X, \overline{X}, U] \exp \left(-S_F^{(s)} \left(S_F^{(t)} - m_0 \overline{X} \right) \right) \mathbf{S}_G
$$

Spatial Link Integral

$$
\simeq \int D[X, \overline{X}, U_0] \exp\left(\frac{1}{2}(M, V_M M) + (\overline{B}, \sum_{n} B) - (\overline{X} G_0 X)\right)
$$

1/d Expansion (1/√d) **Bosonization** (Hubburd-Stratonovich transformation)

$$
\simeq \int D[X, \overline{X}, U_0, \sigma] \exp \left[-\frac{1}{2}(\sigma, V_M \sigma) \left(\sigma, V_M M \right) - (\overline{X} G_0 X) \right]
$$

Quark and U⁰ Integral \simeq exp $\left| -N_S^3 N_\tau \right| \frac{1}{2}$ 1 2 $a_{\sigma} \sigma^{2}$ *(T* log $G_{U}(\sigma)$) = exp($-N_{S}^{3} F_{\text{eff}}/T$) $(\bar{X}G(\sigma)X)$

Local Bi-linear action in quarks → Effective Free Energy

A. Ohnishi, YKIS06, 2006/11/29 7

Strong Coupling

SCL-LQCD with Baryons

Problem: Diquark Condensates induce quark-baryon coupling, and Baryon integral becomes difficult. $\overline{\mathcal{Y}}$

Color Angle Average

- **→ Solution:** *Color Angle Average*
	- **Integral of "Color Angle Variables"**

$$
\int \mathcal{D}[\phi_a, \phi_a^{\dagger}] \exp \left\{ \phi_a^{\dagger} D_a + D_a^{\dagger} \phi_a \right\} \ = \ \int \mathcal{D}[v] \exp \left\{ \frac{v^2}{3} D_a^{\dagger} D_a + \frac{v^4}{162} M^3 \bar{b} b \right\}
$$

Three-Quark and Baryon Coupling is ReBorn !

$$
D_a^{\dagger} D_a = Y + \bar{b}B + \bar{B}b \ , \quad Y = \frac{\gamma^2}{2} M^2 - \frac{1}{9\gamma^2} M \bar{b}b
$$

Solve "Self-Consistent" Equaton

$$
\exp(\overline{b}B + \overline{B}b) \simeq \exp\left[-v^2 - Y + \frac{v^2}{3}\left(bB + \overline{B}b + Y\right) + \frac{v^4}{162}M^3\overline{b}b\right]
$$

$$
\simeq \exp\left[-\frac{v^2}{R_v} + \frac{v^4M^3\overline{b}b}{162R_v} - Y\right] \quad (R_v = 1 - v^2/3)
$$

A. Ohnishi, YKIS06, 2006/11/29 10

D=

2

 ϵ X X +

 $\overline{\chi}$ b

 $3y$

Effective Free Energy with Diquark Condensate

Bosonization of $M^k\bar{b}b \rightarrow$ Introduce k bosons

$$
\exp M^k \overline{b} b = \int d\omega_k \exp[-\frac{1}{2}(\omega_k + \omega_k M + \sqrt{(\alpha_k M^{k-1} \overline{b} b)}^2 + M^k \overline{b} b]
$$

=
$$
\int d\omega_k \exp[-\omega_k^2/2 - \omega(\alpha_k M + 1/\alpha_k M^{k-1} \overline{b} b) - \alpha_k^2 M^2/2]
$$

Effective Free Energy

$$
\mathcal{F}_{\text{eff}}^{(Tbv)} = F_X(\sigma, v, \omega_i) + F_{\text{eff}}^{(b)}(g_{\omega}\omega) + F_{\text{eff}}^{(q)}(m_q)
$$

$$
F_X = \frac{1}{2}(a_{\sigma}\sigma^2 + \omega^2 + \omega_1^2 + \omega_2^2) + \frac{v^2}{R_v} \qquad m_q = a_{\sigma}\sigma + \alpha\omega + \alpha_1\omega_1 + \alpha_2\omega_2 + m_0
$$

$$
a_{\sigma} = \frac{1}{2} - \gamma^2 - \alpha^2 - \alpha_1^2 - \alpha_2^2 \qquad g_{\omega} = \frac{1}{9\alpha\gamma^2} \left[1 + \frac{\gamma^2 v^4 \omega_1 \omega_2}{18\alpha_1 \alpha_2 R_v}\right]
$$

The same F_{eff} *is obtained at* $v=0$. *Diquark Effects in interaction start from v 4 . (No Stable CSC phase appears at g= ∞)*

c.f. Ipp, Yamamoto

Effective Free Energy with Baryon Effects
\n(Kawamoto-Miura-AO-Ohnuma, hep-lat/0512023)
\n
$$
F_{\text{eff}}(\sigma) = \frac{1}{2} b_{\sigma} \sigma^2 + F_{\text{eff}}^{(q)}(b_{\sigma} \sigma; T, \mu) + \Delta F_{\text{eff}}^{(b)}(g_{\sigma} \sigma)
$$

is analytically derived based on many previous works, including

- **Strong Coupling Limit** *(Kawamoto-Smit, 1981)*
- **1/d expansion** *(Kluberg-Stern-Morel-Petersson, 1983)*
- **Lattice chemical potential** *(Hasenfratz-Karsch, 1983)*
- **Quark and time-like gluon analytic integral** *(Damgaad-Kawamoto-Shigemoto, 1984, Faldt-Petersson, 1986)* 1 1
- $F_{\text{eff}}^{(q)}(\sigma;T,\mu) = -T \log |C_{\sigma}^{3} -$ 2 C_{σ} + $\left[\frac{1}{4} C_{3\mu} \right]$ $C_{\sigma} = \cosh(\sinh^{-1} \sigma / T)$ $C_{3\mu} = \cosh(3\mu / T)$
	- **Decomposition of baryon-3 quark coupling** *(Azcoiti-Di Carlo-Galante-Laliena, 2003)*

and auxiliary baryon potential and baryon integral

Free Energy Surface and Phase Diagram

Phase diagram in SCL-LQCD with Baryons

(Kawamoto-Miura-AO-Ohnuma, hep-lat/0512023)

- **Baryon effects on phase diagram**
	- **Energy gain in larger condensates → Extension of hadron phase to larger μ by around 30 %.**

Discussions

- **Present phase diagram ↔ real phase diagram**
	- **One species of staggered fermion ~ N^f =4. Should be 1st order !**
	- **Tc** seems to be too high. μ_c/T_c (present) ~ 0.45 $\leftrightarrow \mu_c/T_c$ (real)~(2-3)
	- **No stable CSC phase** *(Azcoiti et al., 2003)* **↔ Stable CSC phase at large μ** *(Alford, Hands, Stephanov)*

Two parameters are introduced through identities (HS transf.)

- **The results should be independent from parameter choice ! → MFA may break the identity...**
- **How should we fix these parameters ?**
- **Is** SCL-LQCD useful $? \rightarrow$ We would like to answer "Yes"!
	- **Chiral RMF derived in SCL-LQCD works well in Nuclear Physics (Tsubakihara, AO, nucl-th/0607046 Tsubakihara,Maekawa,AO, Proc. of HYP06, to appear)**
	- **1/g ² expansion may connect SCL-LQCD and real world.**

Small Critical μ : Common in SCL-LQCD ?

- **Finite** *T* **SCL-LQCD**
	- **No B:** *μ^c (0)/T^c (0) ~ (0.2-0.35)* **(Nishida2004, Bilic-Karsch-Redlich 1992,)**
	- **Present:** $\mu_c(0)/T_c(0) < 0.44$ **(Parameter dep.)**
- **Monte-Carlo:** *μ^c (0)/T^c (0) > 1*
	- **Fodor-Katz (Improved Reweighting) Bielefeld (Taylor expansion), de Forcrand-Philipsen (AC),** ľЛ,
- **Real World:** *μ^c (0)/T^c (0) > 2*

T c (0) ~ 170 MeV, μ^c (0) > 330 MeV

1/g ² expansion (w/o Baryon Effects)

- T_c (μ =0) and μ_c (T=0): Which is worse ?
	- **1/g ² correction reduces T c .** *(Bilic-Cleymans 1995)*
	- **Hadron masses are well explained in SCL.** *(Kawamoto-Smit 1981, Kawamoto-Shigemoto 1982)*

→ We expect Tc reduction with 1/g ² correction !

1/d expansion of plaquetts *(Faldt-Petersson 1986)*

Space-like plaquett

$$
\exp\left[\frac{1}{g^{2}}\sum_{x, i > j > 0} \text{Tr} U_{ij}(x)\right] \to \exp\left[-\frac{1}{8 N_{c}^{4} g^{2}}\sum_{x, k > j > 0} M_{x} M_{x+j} M_{x+k} M_{x+k+j}\right]
$$

Time-like plaquett

$$
\exp\left[\frac{1}{g^{2}}\sum_{x,j>0} \text{Tr} U_{0j}(x)\right] \to \exp\left[-\frac{1}{4 N_{c}^{2} g^{2}}\sum_{x,j>0} \left(V_{x} V_{x+j}^{+} + V_{x}^{+} V_{x+j}\right)\right]
$$

$$
\left(V_{x} = \overline{X}_{x} U_{0}(x) X_{x+\hat{0}}\right)
$$

Plaquett Bosonization

Bosonization of Plaquetts (O(1/d, 1/g⁴) and Im(V) are ignored) $+$ MFA

$$
\exp(-S_{r} - S_{g}) \rightarrow \exp\left[-\frac{1}{2}\sum_{x} (e^{\mu}V_{x} - e^{-\mu}V_{x}^{+}) + \frac{1}{4N_{c}}\sum_{x, j>0} M_{x}M_{x+j} + m_{0}\sum_{x}M_{x}\right]
$$
\n
$$
\times \exp\left[-\frac{\beta_{t}}{2}\varphi_{t}\sum_{x} (V_{x} - V_{x}^{+}) + \frac{\beta_{s}\varphi_{s}\sum_{x, j>0} M_{x}M_{x+j}}{\beta_{s}\varphi_{s}\sum_{x, j>0} M_{x}M_{x+j}}\right]
$$
\n
$$
= \exp\left[-\frac{L^{3}}{T}F_{\varphi}\left[-\frac{\alpha}{2}\sum_{x} (e^{\mu}V_{x} - e^{-\mu}V_{x}^{+}) + \frac{1}{2}\sum_{x,y} M_{x}\widetilde{V}_{M}(x,y)M\right]\right]
$$
\n
$$
\alpha = 1 + \beta_{t}\varphi_{t}\cosh\mu , \quad \widetilde{\mu} = \mu - \beta_{t}\varphi_{t}\sinh\mu
$$
\n
$$
< \varphi_{t}> = \langle V^{+} - V \rangle , \quad < \varphi_{s}> = 2 \langle M_{x}M_{x+j}\rangle
$$

Time-like plaquetts modifies effective chemical potential

Effective Free Energy with 1/g ² Correction (w/o B)

After Quark and Time-like Link integral, we get *F* **as**

$$
F = \frac{d}{4 N_c} \sigma^2 (1 + 4 N_c \beta_s \varphi_s) + \frac{\beta_t}{4} \varphi_t^2 + \frac{\beta_s d}{4} \varphi_s^2
$$

\n
$$
= \frac{d}{4 N_c} \sigma^2 + 3 d \beta_s \sigma^4 + \frac{\beta_t}{4} \overline{\varphi}_t^2 + F_q (m_q; \tilde{\mu})
$$

\n
$$
\varphi_s = 2 \sigma^2 , \varphi_t = \overline{\varphi}_t + 2 N_c \cosh \mu
$$

\n
$$
m_q = \frac{d}{2 N_c} \sigma (1 + 4 N_c \beta_s \varphi_s - \beta_t \varphi_t \cosh \mu)
$$

\n
$$
= \frac{d}{2 N_c} \sigma (1 - 2 N_c \beta_t \cosh^2 \mu + 8 N_c \beta_s \sigma^4 - \beta_t \overline{\varphi}_t \cosh \mu)
$$

\n
$$
= \frac{d}{2 N_c} \sigma (1 - 2 N_c \beta_t \cosh^2 \mu + 8 N_c \beta_s \sigma^4 - \beta_t \overline{\varphi}_t \cosh \mu)
$$

 $\tilde{\mu} = \mu - \beta_t \varphi_t \sinh \mu = \mu - 2 N_c \beta_t \cosh \mu \sinh \mu - \beta_t \tilde{\varphi}_t \sinh \mu$

- **Space-like plaquett → Repulsive pot.** ∝ **σ 4 , Enh. σ-quark couling**
- **Time-like plaquett → Reduces μ and σ-quark coupling (** $φ$ _{*t*} has to be determined to minimize \mathbf{F}_{eff})

Phase Boundary with 1/g ² correction

Rapid decrease of T c (μ=0), and slow decrease of μ^c (T=0).

- **Similar reduction of σ-quark coupling and effective μ at** small condensate \rightarrow can be mimicked by the scaling of T *(c.f. Bilic-Claymans 1995 (T c goes down), Arai-Yoshinaga (Poster, goes up).*
- **Ratio** $\mu_c/T_c \sim 1.8 \omega$ g=1.

with baryonic effects (~ 30 %), it may reach empirical value.

A. Ohnishi, YKIS06, 2006/11/29

20

Evolution of Phase Diagram

- **"Reality" Axis: 1/g 2 , nf , m⁰ , would enhance μ^c /T c ratio**
- **Example:** $1/g^2$ correction enhances μ_c/T_c by a factor \sim (2-3).

Hokkaido Universitv

Chiral symmetric RMF with logrithmic σ potential

K. Tsubakihara, AO, nucl-th/0607046 K. Tsubakihara, H. Maekawa, AO, Proc. of HYP06, to appear.

T.Tsubakihara shows a poster in the 3rd week.

RMF with Chiral Symmetry: Chiral Collapse

Naïve Chiral RMF models \rightarrow **Chiral collapse at low** ρ *(Lee-Wick 1974)*

$$
L = \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \partial^{\mu} \pi \right) - \frac{\lambda}{4} \left(\sigma^{2} + \pi^{2} \right)^{2} + \frac{\mu^{2}}{2} \left(\sigma^{2} + \pi^{2} \right) + c \sigma
$$

Prescriptions

- **σω coupling (too stiff EOS)** *(Boguta 1983, Ogawa et al. 2004)*
- **Loop effects (unstable at large σ)** *(Matsui-Serot, 1982, Glendenning 1988, Prakash-Ainsworth 1987, Tamenaga et al. 2006)*
- **Higher order terms (unstable at large σ)** *(Hatsuda-Prakash 1989, Sahu-O hnishi 2000)*
- *Dielectric (Glueball) Field representing scale anomaly (Furnstahl-Serot 19 93, Heide-Rudaz-Ellis 1994, Papazoglou et al.(SU(3)) 1998)*
- **Different Chiral partner assignment** *(DeTar-Kunihiro 1989, Hatsuda-Pra kash 1989, Harada-Yamawaki 2001, Zschiesche-Tolos-Schaffner-Bielich-Pi sarski, nucl-th/0608044) → SU^f (3) extention ?*
- *Nucleon Structure (Saito-Thomas 1994, Bentz-Thomas 2001)*

Instability in Chiral Models

- **Linear σ Model → Chiral restor. Below** $ρ_0$.
- **Baryon Loop & Sahu-Ohnishig models → Unstable at large σ**
- **Boguta model → Too Stiff EOS**

Division of Physics Graduate School of Science Hokkaido University

$$
V_{\sigma}^{\text{BL}} = \frac{m_{\sigma}^2}{2f_{\pi}^2} (\phi^2 - f_{\pi}^2)^2 - M_N^4 f_{\text{BL}}(\phi/f_{\pi})
$$

$$
f_{\text{BL}} = -\frac{1}{4\pi^2} \left[\frac{x^4}{2} \log x^2 - \frac{1}{4} + x^2 - \frac{3}{4}x^4 \right]
$$

RMF with σ Self Energy from SCL-LQCD

σ Self Energy from simple Strong Coupling Limit LQCD

$$
S \rightarrow -\frac{1}{2}(M, V_M M) \qquad (1/d \text{ expansion})
$$

\n
$$
\rightarrow b\sigma^2 + (\bar{\chi} \sigma \chi) \qquad \text{(auxiliary field)}
$$

\n
$$
\rightarrow b\sigma^2 \boxed{-a \log \sigma^2} \qquad \text{(Fermion Integral)}
$$

RMF Lagrangian Non-Analytic Type σ Self Energy

 \bullet \bullet **is** shifted by f_{π} , and small explicit χ breaking term is added.

$$
\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \gamma^{\mu} V_{\mu} - M + g_{\sigma} \sigma \right) \psi + \mathcal{L}_{\sigma}^{(0)} + \mathcal{L}_{\omega}^{(0)} + \mathcal{L}_{\rho}^{(0)}
$$

$$
-U_{\sigma} + \frac{\lambda}{4} (\omega_{\mu} \omega^{\mu})^2
$$

$$
(\sigma) = 2a f (\sigma / f_{\pi}), \ f(x) = \frac{1}{2} \left[-\log(1+x) + x - \frac{x^2}{2} \right], \ a = \frac{f_{\pi}^2}{2} \left(m_{\sigma}^2 - m_{\pi}^2 \right)
$$

 U_{σ} (

Nuclear Matter and Finite Nuclei

- **Nuclear Matter:** By tuning λ , g_{ωN}, m_σ, *EOS can be Soft!*
- **Finite Nuclei: By tuning** $g_{\rho N}$ **, Global behavior of B.E. is reproduced, except for j-j closed nuclei (C, Si, Ni).**

Astrophysical Applications

Neutron Stars

→ Supported up to 1.9 Msolar

- **Supernova**
	- **→ Explision E. Enhancement of around 2-4 % compared to TM1**

A. Ohnishi, YKIS06, 2006/11/29 27

Masses of hadronic stars vs their central ρ_B

Extention to Chiral SU(3)

Strong Coupling Limit LQCD guess

 $F_{\text{eff}} = b \operatorname{Tr}(M^+M) - a \log \det(M^+M) - c_{\sigma} \sigma - c_{\zeta} \zeta + d \left(\det M^+ + \det M\right)$

 $+ U_A(1)$ **anomaly Bosonization + Quark integral + Explicit breaking**

$$
M = \Sigma + i \Pi = diag(\sigma/\sqrt{2}, \sigma/\sqrt{2}, \zeta) (in \text{ MFA})
$$

\n
$$
= a \left[2 f(\sigma/f_{\pi}) + \frac{1}{2} f(\zeta/f'_{\zeta}) \right] + \frac{m_{\sigma}^2}{2} \sigma^2 + \frac{m_{\zeta}^2}{2} \zeta^2 + \zeta \sigma \zeta + const.
$$

\n(after shifting $\sigma \to \mathbf{f}_{\pi} + \sigma, \zeta \to \mathbf{f}_{\zeta} + \zeta$)
\n
$$
f(x) = \frac{1}{2} \left[-\log(1+x) + x + \frac{x^2}{2} \right], \quad a = \frac{f_{\pi}^2}{2} \left(m_{\sigma}^2 - m_{\pi}^2 \right)
$$

\nmost of the parameters are determined to fit meson masses !

 \rightarrow **One** parameter **m**

Is it consistent with Nuclear Matter and Finite Nuclei ?

Symmetric Nuclear Matter in Chiral SU(3) RMF

Soft EOS in Chiral SU(3) RMF

- **σ-ζ mixing → Evolution along σ-ζ valley**
- **K**= 216 MeV ω **m**_{σ} = 690 MeV
	- \rightarrow Consistent with $K=210 \pm 30$ MeV

Finite Nuclei

9

8

7

6

5

4

3.E./A(MeV)

Si

- **Other Model Parameters**
	- $g_{\rho N} \rightarrow$ **Normal Nuclei**
	- **(gσΛ , gζΛ) → Single Λ Nuclei**
	- **_{ζΛ} →** $⁶$ **_{ΛΛ}He**</sup> $(SU_V(3)$ is assumed for $g_{V\Lambda}$)

A. Ohnishi, YKIS06, 2006/11/29

 $\begin{bmatrix} \mathbf{C} & \mathbf{exp} & \mathbf{R} \\ \mathbf{exp} & \mathbf{R} & \mathbf{E} \\ \mathbf{E} & \mathbf{E} & \mathbf{E} \end{bmatrix}$

Ca

 $m_{\sigma}^{\prime} = 684$ $SU(2)$

 $\overline{\mathbf{O}}$ **o** $\overline{\mathbf{O}}$

NiZr Sn

Si

Pb

Ca

Summary

- **We obtain an analytical expression of effective free energy** *at finite T and finite μ* **with** *baryonic composite* **effects in the strong coupling limit of lattice QCD for color SU(3).**
	- *MFA, QG integral, 1/d expansion (NLO, O(1/√d)), bosonization with* diquarks and baryon potential field using $(\overline{b}b)^2=0$, Linear approx., *zero diquark cond.(Color Angle Average), variational parameter choice*
- **Baryonic action is found to result in** *Free Energy Gain* **and** *Extension of Hadron Phase to Larger μ by around 30 %.*
	- *Problem: Too small μ^c /Tc in the Strong Coupling Limit.*
- **Strong Coupling Limit is useful to understand Dense Matter**
	- *SCL gives a qualitative insight.*
	- *1/g ² correction seems to work well (Do not believe us yet ...)*
	- *Application to chiral RMF (K. Tsubakihara, AO, nucl-th/0607046) → 3rd week Poster by Tsubakihara*

Parameter Choice

- **In bosonization, two parameters (γ and α) are introduced through identities.**
	- **Major effects → Modify the energy scale**
	- **Minor effects**
		- **→ Controls the higher order potential terms**

→ We have fixed them to minimize F eff /T c at vacuum

Baryon Integral

Baryon integral can be evaluated in an almost analytic way !

$$
F_{\text{eff}}^{(b)}(g_{\omega}\omega) = \frac{1}{\beta L^{3}} \log \text{Det} [1 + g_{\omega}\omega V_{B}]
$$

\n
$$
\approx \frac{-a_{0}^{(b)}/2}{(4\pi\Lambda^{3}/3)} \int_{0}^{\Lambda} 4\pi k^{2} dk \log \left[1 + \frac{g_{\omega}^{2}\omega^{2}k^{2}}{16}\right]
$$

\n
$$
= -a_{0}^{(b)} f^{(b)} \left(\frac{g_{\omega}\omega\Lambda}{4}\right)
$$

\n
$$
f^{(b)}(x) = \frac{1}{2} \log(1+x^{2}) - \frac{1}{x^{3}} \left[\arctan x - x + \frac{x^{3}}{3}\right]
$$

$$
a_0^{(b)} = 1.0055 \; , \; \Lambda = 1.01502 \times \pi/2.
$$

Disappearance of TCP

- **Tri-Critical point disappears at around β^g ~ 1.4**
	- **→ 1st order phase transition even at μ=0.**
		- **One species of staggered fermion in the chiral limit ~ mass less quark flavor N^f =4**
		- **Need quarter-root treatment or Wilson fermion with finite s-quark mass**
		- **Reason: Space-like plaquett enhances σ-quark coupling at large condensate ???**

A. Ohnishi, YKIS06, 2006/11/29 35

Division of Physics Iokkaido University

Problems in RMF with Chiral Symmetry

Sudden Change of <σ>

 ϵ (m_o=600 MeV, ρ_B =0-5 ρ_0)

Stiff EOS

Hokkaido University

Energy surface Validity of "Linear" Approx.

A. Ohnishi, YKIS06, 2006/11/29

37

RMF with σ Self Energy from SCL-LQCD

σ Self Energy from simple SCL-LQCD

$$
S \rightarrow -\frac{1}{2}(M V_M M) \rightarrow \frac{1}{2}(\sigma V_M \sigma) + (\overline{X} V_M \sigma X) \rightarrow U_{\sigma} \simeq \frac{1}{2} b \sigma^2 - N_c \log \sigma^2
$$

Chiral RMF with logarithmic σ potential

(Tsubakihara-AO, nucl-th/0607046)

RMF with σ Self Energy from SCL-LQCD

σ Self Energy from simple Strong Coupling Limit LQCD

$$
S \rightarrow -\frac{1}{2}(M, V_M M) \qquad (1/d \text{ expansion})
$$

\n
$$
\rightarrow b\sigma^2 + (\bar{\chi} \sigma \chi) \qquad \text{(auxiliary field)}
$$

\n
$$
\rightarrow b\sigma^2 - a\log \sigma^2 \qquad \text{(Fermion Integral)}
$$

RMF Lagrangian Non-Analytic Type σ Self Energy

 \bullet σ is shifted by f_{π} , and small explicit χ breaking term is added.

$$
\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \gamma^{\mu} V_{\mu} - M + g_{\sigma} \sigma \right) \psi + \mathcal{L}_{\sigma}^{(0)} + \mathcal{L}_{\omega}^{(0)} + \mathcal{L}_{\rho}^{(0)}
$$

$$
-U_{\sigma} + \frac{\lambda}{4} (\omega_{\mu} \omega^{\mu})^2
$$

$$
(\sigma) = 2a f (\sigma / f_{\pi}), \ f(x) = \frac{1}{2} \left[-\log(1+x) + x - \frac{x^2}{2} \right], \ a = \frac{f_{\pi}^2}{2} (m_{\sigma}^2 - m_{\pi}^2)
$$

 U_{σ} (

Towards Realistic Understanding

- **"Reality" Axis: 1/g 2 , nf , m⁰ , would enhance μ^c /T c ratio**
- **Example:** $1/g^2$ correction enhances μ_c/T_c by a factor \sim (2-3).

$$
\exp\left[\frac{1}{g^{2}}\operatorname{Tr} U_{0j}(x)\right] \sim \exp\left[-V_{x}V_{x+j}^{+}/4N_{c}^{2}g^{2}\right] \to \exp\left[-\left(\varphi^{2} + 2\varphi(V_{x}-V_{x+j}^{+})\right)/16N_{c}^{2}g^{2}\right]
$$

$$
S_{F}^{(t)} = \frac{1}{2}\left(e^{\mu}V_{x}-e^{-\mu}V_{x}^{+}\right) - \frac{\alpha}{2}\left(\exp\tilde{\mu}V_{x}-\exp(-\tilde{\mu})V_{x}^{+}\right)
$$
 $(V_{x} = \overline{X}_{x}U_{0}(x)X_{x+\hat{0}})$

Time-like plaquetts can modify effective chemical potential

