Jet-Fluid String 模型における粒子相関

東大理、阪大理^A、北大理^B、フランクフルト大^C 平野哲文、一瀬昌嗣^A、水川零^B、奈良寧^C、大西明^B、吉野公二^B Hadron correlations in Jet-Fluid String model

T.Hirano, M.Isse^A, R. Mizukawa^B, Y.Nara^C, <u>A. Ohnishi^B</u>, K.Yoshino^B U. Tokyo, Osaka U.^A, Hokkaido U.^B, Frankfurt U.^C

- Introduction
- High p_T でのハドロン化模型
- JFS でのハドロン相関
- 🛚 まとめ

Isse, Hirano, Mizukawa, AO, Yoshino, Nara, nucl-th/0702068

High p_T ハドロン生成

- GSI, AGS, SPS → 共鳴ハドロン、ストリング生成と破砕 Nara et al., PRC61('00),024901; Isse et al., PRC72('05),064908.
- RHIC での標準描像 = pQCD+E-loss+ 独立破砕

$$\begin{split} & \frac{d N^{AA}(b)}{dy d^{\mathsf{T}} p_{T}} = \int d \mathbf{r}_{T} t_{A}(\mathbf{r}_{T} - \mathbf{b}/\mathsf{T}) t_{B}(\mathbf{r}_{T} + \mathbf{b}/\mathsf{T}) & \text{Geometry} \\ & \times K \sum_{abcd} \int dx_{a} dx_{b} d^{\mathsf{T}} k_{a} d^{\mathsf{T}} k_{b} f_{a/A} f_{b/B} \frac{d \sigma^{ab \to cd}}{d \hat{t}} & \text{pQCD} \times \text{K-fac.} \\ & \times D(E_{c} - \Delta E_{c}(\mathbf{r}_{T}); c \to h) & \text{E-loss} + \text{Indep. Frag.} \end{split}$$

→ しかし問題は残っている (high p_T での v_2 など) → RHIC ではストリング破砕は必要ないのか?

Hirano et al., PLB636('06)299 (afterburner improves v_2 in Hydro+Jet) Sahu et al. Pramana 67 ('07)257 (cascade \rightarrow low p_T data except for v_2) Parton Cascade (Kinder-Geiger) (Parton cluster \rightarrow hadrons)

Jet-Fluid String formation and decay: Model

Isse, Hirano, Mizukawa, AO, Yoshino, Nara, nucl-th/0702068

- ミニジェット生成 = pQCD (PYTHIA 6.4)
- QGP 中のパートン伝播

 3次元流体模型 Hirano-Nara, PRL91('03), 082301; PRC69('04),034908 Hirano,Tsuda, PRC66('02),054905

- GLV エネルギー損失× factor (C)
 Gyulassy-Levai-Vitev, PRL85('00), 5535.
- ストリング生成・破砕
 - **『スペクトル"関数** Θ (√s 2 GeV)

$$\pi, K Res. 2 GeV$$

 $D(j \rightarrow h) = \int d^{\mathsf{r}} k_f f_f(k_f, T, u_\mu, \mathbf{x}(\tau_f)) \\ \times S(s = (k_j + k_f)^{\mathsf{r}}) D(String(\sqrt{s}, k_j, k_f) \rightarrow h)$

Ohnishi et al(26aSC-4), JPS@Metro U. (2007/3/25-28)

Jet-Fluid String formation and decay: Results

Isse, Hirano, Mizukawa, AO, Yoshino, Nara, nucl-th/0702068

Ohnishi et al(26aSC-4), JPS@Metro U. (2007/3/25-28)

Ŀ

0

10

8

PHENIX(

STAR(prelim.)

ΠD

STAR(7

独立破砕模型との比較

- 独立破砕模型(IF)
 - ppでは IF ~ ストリング破砕
 → 重いストリング (60-70 GeV) が 多くのハドロン (20-25) に崩壊
 - AA での IF @ pT (After E-loss)
 ~ pp でのストリング破砕 @ p_T

これほど重いストリングが作られるか?

High p_T 領域での再結合模型との比較

■ TT(T) → med. pT Nonaka et al., PRC69('04),031902 T: Thermal (Fluid) parton J: Jet parton S: Shower parton

- JT → med. pT (soft-hard) Greco-Ko-Levai, PRC68('03),034904
- TS → med. pT, $(SS)_1$ → high pT Hwa-Yang, PRC70('04)024905
- TT(T) → Res. → med./low pT Greco-Ko, PRC70('04)024901

T+"part of Jet" によるハドロン生成
 π の直接生成より共鳴崩壊が有利
 → JFS の描像と無矛盾

ハドロンの方位角相関

- Au+Au 衝突での後方相関の消失= QGP 生成の強いシグナル
 - Hydro + Jet model Hirano & Nara, PRL (2003)
 - ◆ R_{AA} を説明する E-loss では後方相関の抑制が十分でない
 - Jet "absorption" model Drees, Feng, Jia, PRC71('05), 034909
 - ジェットパートンが exp(-αL) の確率で「吸収」

Ohnishi et al(26aSC-4), JPS@Metro U. (2007/3/25-28)

- Jet-Ridge structure → 横に狭く、縦に広い相関 (narrow △φ +wide △η corr.)
 - Hwa et al.
 放出されたグルーオンの η が 流体発展により広がる
 - JFS conjecture ハドロンが流体パートンと ジェットパートンの y の間で 作られ、

 $y_{Fluid} < y < y_{Jet}$ p_T boost により $\Delta \phi$ 相関は狭くなる

Ridge structure はストリング崩壊の 幾何学の現れではないか?

But, ...

■ JFS 模型において、リッジ構造は見られていない (理由の分析は今後)

水川、卒論

Ohnishi et al(26aSC-4), JPS@Metro U. (2007/3/25-28)

Summary

- JFS 模型は high p_Tで R_{AA}を再現するエネルギー損失率により high p_Tでの v₂ と 後方方位角相関の消失 をほぼ説明できるジェットの破砕機構を与える。
 - v_2 は 1 % 程度過小評価 → ハドロン相での v_2 成長か?
 - ▲ 4 相関は絶対値で1.4 倍過小評価 → Jet-Fluid Res. ?
- JFS では比較的軽いストリングが少数のハドロンに崩壊する。
 ↔ 独立破砕模型 ~ 重いストリング破砕
- 今後の課題
 - バリオン増大, Jet-Fluid Res. (スペクトル関数との関連), Ridge structure, Cronin and Shadowing effects,

Centrality Dependence

Ohnishi et al(26aSC-4), JPS@Metro U. (2007/3/25-28)

Cronin and Shadowing Effects

Standard (EKS, ...) Cronin+Shadow enh. med. p_T R_{AA} and suppr. high p_T R_{AA}.

Ohnishi et al(26aSC-4), JPS@Metro

Two hadron azimuthal angular correlation

pp 衝突では $\Delta \phi$ correlation は再現されている

Au+Au 衝突を見ると、 IF model では 180° 相関の消失が不完全 JFS model では 180° 相関の消失を定性的には再現

STAR: J.Adams. et al. PRL 91(2003)072304

Two hadron azimuthal angular correlation

JFS model で C-factor の値を小さくとってみると、 180° 相関は消失しない

→ v,同様、∆ ¢ correlation も大きな C-factor をとることができるの が JFS のポイント

STAR: J.Adams. et al. PRL 91(2003)072304

+pseudo rapidity correlation

二つのモデルで ridge structure の再現をしてみる

→どちらのモデルも再現には至らなかった

水川、卒論

Jet-Fluid String formation and decay: Model

Isse, Hirano, Mizukawa, AO, Yoshino, Nara, nucl-th/0702068

- ミニジェット生成 =pQCD (PYTHIA 6.4)
- QGP 中のパートン伝播

 3次元流体模型 Hirano-Nara, PRL91('03), 082301; PRC69('04),034908 Hirano,Tsuda, PRC66('02),054905

GLV エネルギー損失× factor (C)
 Gyulassy-Levai-Vitev, PRL85('00), 5535.

$$\Delta E = \mathbf{C} \times \mathbf{\tilde{\tau}} \pi \alpha^{\mathbf{\tilde{r}}} F_{color} \int_{0}^{\infty} d\tau (\tau - \tau_{\cdot}) \rho \log \left(\frac{\mathbf{\tilde{\tau}} E_{\cdot}}{\mu^{\mathbf{\tilde{\tau}}} L} \right)$$

ストリング生成・ 彼砕

"スペクトル"関数 Θ(√s – 2 GeV)

$$D(j \rightarrow h) = \int d^{\mathsf{r}} k_f f_f(k_f, T, u_\mu, \mathbf{x}(\tau_f)) \\ \times S(s = (k_j + k_f)^{\mathsf{r}}) D(String(\sqrt{s}, k_j, k_f) \rightarrow h)$$

Ohnishi et al(26aSC-4), JPS@Metro U. (2007/3/25-28)

$$\begin{array}{c|c}
\hline & & & \\
\hline & & & \\
\hline & \pi, K \text{ Res.} \\
\hline & & 2 \text{ GeV} \end{array} M
\end{array}$$