強結合格子 *QCD* における *Quarkyonic* 相 *Quarkyonic Phase in Lattice QCD at Strong Coupling*

Akira Ohnishi and Kohtaroh Miura

 Yukawa Institute for Theoretical Physics (YITP), Kyoto Univ.

- **Introduction**
- **Strong Coupling Lattice QCD with 1/g² Correction**
- **Phase diagram in SC-LQCD and Quarkyonic Phase**
- **Summary**

Miura and AO, arXiv:0806.3357 Our previous refs. on $1/g^2$ *corr. AO et al. PTP Suppl. 168(07) 261 [arXiv:0704.2823] AO, Kawamoto, Miura, J.Phys.G34(07)S655 [hep-lat/0701024]*

Introduction: Quark Matter Phase Diagram

- **What is the NEXT to the hadron phase ?**
	- **High T direction → (Strongly correlated) Quark Gluon Plasma**
	- **High μ direction ; Important for Dense Matter Physics Baryon rich QGP**
		- **or Color SuperConductor (CSC)**
		- **or Quarkyonic (QY) matter** *McLerran, Pisarski (07)*

Quarkyonic Phase & Strong Coupling Lattice QCD

- **Quarkyonic matter at large N**_c *McLerran, Pisarski (07)*
	- **Gluon contribution** $O(N_c^2)$ **>> Quark** $O(N_c)$ **, Hadron** $O(1)$ \rightarrow Gluonic (deconf.) P.T. is independent of μ (as far as μ = O(1))
	- At $N_c\mu > M_B$, baryon density rapidly grows, and soon reaches $O(N_c)$ **→ Existence of "Confined High Baryon Density Matter" made of** *quark***s but with bar***yonic* **excitation (Quarkyonic Matter)**

Do we have Quarkyonic phase in QCD with N_c=3 ? → QCD at Finite (but not very large) μ → Strong Coupling Lattice QCD

Quarkyonic phase in SC-LQCD

We study the phase diagram in Strong Coupling Lattice QCD (SC-LQCD) with 1/g² correction, and examine the existence of the Quarkyonic (QY) phase.

- **Reservations:** *It is still a* "Toy"
	- **One species of staggered fermion without quarter/square root** \rightarrow N_f = 4
	- **Leading order in 1/d (d=spatial dim.) → No baryon effects (cf.** *Par-Tue, Miura***)**
	- **Mean Field treatment**
	- **No Diqaurk condensate**
	- **NLO in 1/g² expansion, ...**

Effective Action with 1/g² (1)

- **Strong Coupling Limit → No Plaquette Contribution**
- $1/g^2 \rightarrow$ Single plaquette contribution
	- **Spatial One-Link Integral (1/d expansion)**
		- **→ MMMM (Spatial Plaq.), V+V- (Temporal Plaq.)** *Faldt, Petersson (86); Bilic, Karsch, Redlich (92)*

$$
V_x^+ = e^{\mu} \bar{\chi}_x U_0(x) \chi_{x+\hat{0}}
$$

$$
V_x^- = e^{-\mu} \bar{\chi}_{x+\hat{0}} U_0^{\dagger}(x) \chi_x
$$

- **Product of Different Composites**
	- **→ Extended Hubbard-Stratonovich Transf.**

(Mean field approx. ϕ **(Scalar), Saddle point approx. for** φ **(Vector))**

$$
e^{\alpha AB} = \int d\varphi d\phi e^{-\alpha \left\{\varphi^2 - (A+B)\varphi + \phi^2 - i(A-B)\phi\right\}}
$$

$$
\approx e^{-\alpha \left\{\varphi^2 - (A+B)\varphi - \phi^2 + (A-B)\phi\right\}}.
$$

Effective Action with 1/g² (2)

 \blacksquare Temporal Plaquette action

$$
\Delta S_{\beta}^{(\tau)} \approx \frac{1}{4N_c^2 g^2} \sum_{x,j>0} \left[\varphi_{\tau}^2 + (V_x^+ - V_{x+j}^-) \varphi_{\tau} - \varphi_{\tau}^2 - (V_x^+ + V_{x+j}^-) \varphi_{\tau} \right] + (j \leftrightarrow -j)
$$

Effective Action with 1/g²

Effective Potential with 1/g²

Effective Potential (after subst. equil. value for φ **_τ and** φ **_s)**

$$
\mathcal{F}_{\text{eff}} = \mathcal{F}_{\text{X}}(\sigma, \phi_{\tau}) + \mathcal{V}_{\text{q}}(m_q(\sigma), \tilde{\mu}(\phi_{\tau}), T)
$$
\n
$$
\mathcal{V}_{\text{q}} = -T \log \left[X_{N_c} (E_q/T) + 2 \cosh(N_c \tilde{\mu}/T) \right]
$$
\nSame as SCL

\n
$$
\mathcal{F}_{\text{X}} = \frac{1}{2} b_\sigma \sigma^2 + \frac{\beta_\tau}{2} \sigma^2 (m_q^{\text{SCL}})^2 + \frac{3d\beta_s}{2} \sigma^4 - \frac{\beta_\tau}{2} \phi_\tau^2
$$
\n
$$
m_q = m_q^{\text{SCL}} \left[(1 - N_c \beta_\tau) + \beta_\tau \sigma (m_q^{\text{SCL}})^2 + 2d\beta_s \sigma^3 \right]
$$
\nfrom

\n
$$
\tilde{\mu} = \mu - \beta_\tau \phi_\tau
$$

Scaling of temporal spacing $(1 + \beta_{\tau}\varphi_{\tau})$ **in the Eff. Action** \rightarrow suppr. of quark mass m_a

Higher order terms $M^4 \rightarrow \sigma^4$ **(Self-energy of** σ **)**

Aux. Field $\phi_{\tau} = \rho_{q}$ (equil.) $\rightarrow \mu$ is shifted by baryon density

Let us examine the phase diagram with this F_e

Evolution of T_c and $μ_c$

- **T**_c (μ=0) rapidly decreases with $β = 6/g²$ increases.
	- **MC results (N^τ =2) Quench β^c =5.097(1) (Kennedy et al, 1985)**

 $m_{0} = 0.05 \rightarrow \beta_{c} = 3.81(2), \ m_{0} = 0.025 \rightarrow \beta_{c} = 3.67(2)$ **(de Forcrand, private comm.)**

MC results with small m⁰ agrees with SC-LQCD !

Phase Diagram

- **Three phases in SC-LQCD with** $N_c = 3$ **,** $6/g^2 > 3.53$ **,** $m_0 = 0$ **(** χ **limit)**
	- **Nambu-Goldstone (NG) phase: Large σ, Small ρ^q , Small P**
	- **Winger phase: σ=0, Large ρ^q , finite P**

Comparison with Other Models

Comparison with Other Models

Quarkyonic(-like) Area in SC-LQCD is smaller than in PNJL *Fukushima (08)*

Abuki, Anglani Gatto, Nardulli, Ruggieril [arXiv:0805.1509]

Ohnishi, Miura, JPS@Yamagata, 2008/09/20-23 **11**

Conclusions

Miura and AO, arXiv:0806.3357

- **We have investigated the phase diagram in Strong Coupling Lattice QCD with 1/g² corrections. Through the extended Hubbard-Stratonovich transf., we find that vector field for quarks is introduced.**
- **Critical Temperature at μ=0 is found to be consistent with MC results by P. de Forcrand, T_c=1/2 (N_τ =2) at** $6/\text{g}^2_c \sim 3.6$
- **We find that the Quarkyonic (QY) phase at large Nc proposed by McLerran & Pisarski** appears also at $N_c = 3$ in SC-LQCD with $6/g^2 > 3.53$, **where the chiral symmetry is weakly but spontaneously broken, and the baryon density is high.**
	- *QY* may be the "NEXT" to the hadron phase even at $N_c = 3$.
- \blacksquare Do we really have QY in nature ?

Backups

"Evolution" of Phase Diagram

- **Phase Diagram "Shape" becomes closer to that of Real World.**
	- **Real world R=3** $\mu_c/T_c \sim (6-12)$
	- **1985** \rightarrow **R=0.79** (Zero T / Finite T)
	- **1992** \rightarrow **R=0.83** (Finite T & μ)
	- **2004 → R= 0.99 (Finite T& μ)**

Effective Potential in SCL-LQCD

Ohnishi, Miura, JPS@Yamagata, 2008/09/20-23 **15**

Effective Potential with 1/g² (1)

1/d expansion of Plaquette action (Spatial One-Link Integral)

Faldt, Petersson (86); Bilic, Karsch, Redlich (92)

$$
\int dU U_{ab} U_{cd}^+ = \frac{1}{N_c} \delta_{ad} \delta_{bc}
$$

- **Spatial plaquett → MMMM**
- **Temporal Link → V+V-**

$$
V_x^+ = e^{\mu} \bar{\chi}_x U_0(x) \chi_{x+\hat{0}}
$$

$$
V_x^- = e^{-\mu} \bar{\chi}_{x+\hat{0}} U_0^{\dagger}(x) \chi_x
$$

Effective Action

$$
\begin{split} \Delta S^{(\tau)}_{\beta} &= \frac{1}{4N_c^2g^2} \sum_{x,j>0} (V_x^+V_{x+\hat{j}}^- + V_x^+V_{x-\hat{j}}^-) \\ \Delta S^{(s)}_{\beta} &= -\frac{1}{8N_c^4g^2} \sum_{x,k>j>0} M_x M_{x+\hat{j}} M_{x+\hat{k}} M_{x+\hat{k}+\hat{j}} \end{split}
$$

Effective Potential with 1/g² (2)

Extended Hubbard-Stratonovich Transf.

$$
e^{\alpha AB} = \int d\varphi d\phi e^{-\alpha \left\{\varphi^2 - (A+B)\varphi + \phi^2 - i(A-B)\phi\right\}}\n\n\approx e^{-\alpha \left\{\varphi^2 - (A+B)\varphi - \phi^2 + (A-B)\phi\right\}}.
$$

- **Mean field approx.** ϕ **, Saddle point approx. for** φ
- **E.g. Temporal Plaquette action becomes,**

$$
\Delta S_{\beta}^{(\tau)} \approx \frac{1}{4N_c^2 g^2} \sum_{x,j>0} \left[\varphi_{\tau}^2 + (V_x^+ - V_{x+j}^-) \varphi_{\tau} - \phi_{\tau}^2 - (V_x^+ + V_{x+j}^-) \phi_{\tau} \right] + (j \leftrightarrow -j)
$$

Effective Action becomes similar to the SCL action,

$$
S_{\text{eff}} = \frac{1}{2} \left[1 + \beta_{\tau} \varphi_{\tau} \right] \sum_{x} \underbrace{\left[e^{-\beta_{\tau} \phi_{\tau}} V_{x}^{+} - \left[e^{\beta_{\tau} \phi_{\tau}} V_{x}^{-} \right] + m_{0} \sum_{x} M_{x} \underbrace{\left[1/g^{2} \right]}_{x} - \left(\frac{1}{4N_{c}} \underbrace{\left[+ \beta_{s} \varphi_{s} \right]}_{x, j > 0} \sum_{x, j > 0} M_{x} M_{x+j} \underbrace{\left[+ N_{\tau} L^{d} \left[\frac{\beta_{\tau}}{2} (\varphi_{\tau}^{2} - \phi_{\tau}^{2}) + \frac{d \beta_{s}}{2} \varphi_{s}^{2} \right] \right]}_{x, j > 0}
$$

Effective Potential with 1/g² (2)

Extended Hubbard-Stratonovich Transf.

$$
e^{\alpha AB} = \int d\varphi d\phi e^{-\alpha \left\{\varphi^2 - (A+B)\varphi + \phi^2 - i(A-B)\phi\right\}}\n\n\approx e^{-\alpha \left\{\varphi^2 - (A+B)\varphi - \phi^2 + (A-B)\phi\right\}}.
$$

- **Mean field approx.** ϕ **, Saddle point approx. for** φ
- **E.g. Temporal Plaquette action becomes,**

$$
\Delta S_{\beta}^{(\tau)} \approx \frac{1}{4N_c^2 g^2} \sum_{x,j>0} \left[\varphi_{\tau}^2 + (V_x^+ - V_{x+j}^-) \varphi_{\tau} - \varphi_{\tau}^2 - (V_x^+ + V_{x+j}^-) \varphi_{\tau} \right] + (j \leftrightarrow -j)
$$

\n• Effective Action becomes similar to the SET action,
\n
$$
S_{\text{eff}} = \frac{1}{2} \left[1 + \beta_{\tau} \varphi_{\tau} \right] \sum_x \left[e^{-\beta_{\tau} \varphi_{\tau}} V_x^+ - e^{\beta_{\tau} \varphi_{\tau}} V_x^- \right] + m_0 \sum_x M_x. \text{ Terms}
$$
\n
$$
- \left(\frac{1}{4N_c} + \beta_s \varphi_s \right) \sum_{x,j>0} M_x M_{x+j} + N_{\tau} L^d \left[\frac{\beta_{\tau}}{2} (\varphi_{\tau}^2 - \varphi_{\tau}^2) + \frac{d\beta_s}{2} \varphi_s^2 \right]
$$

Baryon Density and Polyakov Loop in QY

- **Example:** $N_c = 3$, $6/g^2 = 4.5$, $m_0 = 0$ (χ limit)
- **Baryon Density (=** $\rho_q/3$ **)**
	- **ρq ~ 0 in Nambu-Goldstone (NG) phase ρq > 0 in Wigner phase**
	- **ρq in QY ~ ρ^q in Wigner phase**
- **(Quark Driven) Polyakov Loop (=P)**
	- **Quark driven** $P \sim O(N_c)$
	- **P(QY) < P (Wig.)**

$$
P = \frac{1}{2N_c} \left\langle \text{tr}\left[\prod_{\tau} U_0 + \prod_{\tau} U_0^{\dagger}\right] \right\rangle
$$

=
$$
\frac{X_{N_c-1} \cosh[\tilde{\mu}/T] + X_1 \cosh[(N_c-1)\tilde{\mu}/T]}{N_c (X_{N_c} + 2 \cosh[N_c\tilde{\mu}/T])}
$$

Why do we have QY ? Which Explanation do you like ?

- **Vector field (φ_τ) acts more repulsively at smaller σ, and generates a local minimum in the region of** $\sigma \ll \sigma_{\text{vac}}$
- **2nd order P.T. condition (C² =0) leads to the relation of effective μ and T.**

$$
F_{\text{eff}} = F(\sigma = 0) + C_2 \sigma^2 + C_4 \sigma^4 + ...
$$

\n
$$
C_2(T, \mu - \beta_\tau \rho_q(\sigma = 0)) = 0
$$

\n
$$
\rightarrow \mu_c^{(\text{2nd})} = f(T) - \beta_\tau \rho_q
$$

Smaller σ

- **→ Smaller const. quark mass**
- \rightarrow Larger ρ_a
- \rightarrow **Smaller** μ_{eff}

→ Later P.T. to Wigner phase (σ=0)

