Phase diagram and critical point evolution in NLO and NNLO strong coupling lattice QCD

Akira Ohnishi (YITP, Kyoto Univ.) in collaboration with K. Miura (YITP), T. Z. Nakano (Kyoto U.), and N. Kawamoto (Hokkaido U.)

- Introduction
- Effective Potential in NLO & NNLO SC-LQCD
- Phase Diagram and Critical Point Evolution
- Summary

Miura, Nakano, AO, Prog. Theor. Phys., to appear [arXiv:0806.3357] Miura, Nakano, AO, Kawamoto, arXiv:0907.4245 Nakano, Miura, AO, in prep.

Where is the Critical Point ?

- Critical Point Search= One of the main goals in Low-E progs. at RHIC
- **Theory** \rightarrow No Consensus (Sign prob. at finite μ)

Can we attack CP in LQCD ? → Strong Coupling LQCD

Ohnishi, Lattice 2009 (July 26, 2009) @ Beijing

Strong Coupling Lattice QCD

- **Large bare coupling** $\rightarrow 1/g^2$ expansion
- Success in pure YM → Lattice MC & 1/g² Expansion (Wilson, '74; Creutz, '80; Munster '81)
 - → Scaling region would be accessible in SC-LQCD !
- Chiral transition at finite T and μ in Strong Coupl. Limit (SCL) & Next-to-leading order (NLO) Kawamoto-Smit '81, Damgaard-Kawamoto-Shigemoto, '84(U(3)), Faldt-Petersson'86 (SU(3)), Fukushima'04(SU(3)), Nishida '04 (SU(3)), Bilic-Karsch-Petersson, '92(NLO), Kawamoto-Miura-AO-Ohnuma '07 (Baryons)

VITP Kyoto

Ohnishi, Lattice 2009 (July 26, 2009) @ Beijing

Munster, '81

Strong Coupling Lattice QCD with Fermions

- SC-LQCD with fermions
 - SCL & NLO: Far from "scaling" behavior.
 - $\beta = 2N_c/g^2$ dep. of the critical point is not studied yet.
 - Condensates other than σ are not yet included in previous works. (*Faldt-Petersson '86; Bilic-Karsch-Redlich '92; Bilic-Demeterfi-Petersson '92; Bilic-Claymans '95*)

NLO & NNLO SC-LQCD: Setups & Disclaimer

- Present setups in strong coupling LQCD
 - Effective action in SCL (1/g⁰), NLO (1/g²), NNLO (1/g⁴) terms
 - One species of unrooted staggered fermion (N_f=4)
 - Leading order in 1/d expansion (d=3=space dim.)
 - Effective potential is obtained in mean field approximation
- Disclaimer
 - Polyakov loop effects are not included.
 - \rightarrow Pure "deconfinement" transition can not be described.
 - Different from "strong couling" in "large N_c"
 SC-LQCD: Large bare coupling, g >> 1 Large N_c: N_c>> 1, fixed λ = N_c g²

Strong Coupling in Large Nc: Nc >> 1, λ >> 1, g << 1

Effective Potential in NLO and NNLO Strong Coupling Lattice QCD

SC-LOCD with fermions at finite T (Outline)

- Lattice QCD action $S_{\text{LQCD}} = S_F^{(\tau)} + \sum_x m_0 M_x + S_F^{(s)} + S_G$ $U_{\mu}^+ U_{\nu} \qquad \begin{array}{c} \overline{\chi} & U_{\mu} & \chi \\ U_{\nu}^+ & U_{\nu} & \chi & U_{\mu}^+ \overline{\chi} \end{array} \stackrel{\text{M}}{\longrightarrow} 0 \qquad \begin{array}{c} 0 \\ M = \overline{\chi} & \chi \\ U_{\mu} & \chi & U_{\mu}^+ \overline{\chi} \end{array}$ Lattice QCD action
- Effective Action (U_i integral + 1/d expansion)

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} \left[V_x^+(\mu) - V_x^-(\mu) \right] + m_0 \sum_{x} M_x \\ - \frac{1}{4N_c} \sum_{x,j>0} M_x M_{x+\hat{j}} + \Delta S_{\text{eff}}$$

Effective Potential (Bosonization + $\chi \& U_0$ integral)

$$S_{\text{eff}}^{(F)} = \sum_{x} \frac{1}{2} \left(V_{x}^{+} - V_{x}^{-} \right) + m_{q} M_{x}$$

$$\mathcal{V}_{q}(m_{q}; \mu, T) = -T \log \left[X_{N_{c}} (E_{q}(m_{q})/T) + 2 \cosh(N_{c} \tilde{\mu}/T) \right]$$

$$X_{N}(x) = \sinh[(N+1)x] / \sinh x , \quad E_{q}(m_{q}) = \operatorname{arcsinh}(m_{q})$$

$$Ohnishi, Lattice \ 2009 \ (July \ 26, \ 2009) \ @ \ Beijing$$

7

Strong Coupling & Cluster Expansion

Cumulant (Connected Cluster) Expansion (E.g., R. Kubo, 1962)

$$\langle \mathcal{O} \rangle = \frac{1}{Z_{\text{SCL}}^{(s)}} \int \mathcal{D}U_j \ \mathcal{O}[U_j] \ e^{-S_F^{(s)}} \qquad Z_{\text{SCL}}^{(s)} = \int \mathcal{D}U_j \ e^{-S_F^{(s)}}$$
$$\langle e^{-S_G} \rangle = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle = \exp\left[\sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_c\right]$$

Next-to-leading order (1/g²) = Cumulants of plaquettes

NNLO Effective Action

- Cumulants of two plaquettes
 - Correlation part of connected two plaquettes

NNLO Effective Action

- Cumulants of two plaquettes
 - Correlation part of connected two plaquettes
 - Uncorr. & Normalization part are suppressed in 1/d power
 - Effective Action consists of $V^{-}V^{+}, W^{-}W^{+},$ MMMM, MMMMMM, $V^{-}V^{+}MM$
 - New type of Composite
 - = next-to-nearest neighboring site coupling in τ direction

$$W_{x}^{+} = X_{x} U_{0,x} U_{0,x+\hat{0}} \overline{X}_{x+2\hat{0}}$$

Effective Action in NNLO SC-LQCD

Bosonization & Effective Potential

Hubbard-Stratonovich transformation

$$\exp\left[\frac{1}{2}MV_{M}M\right] \approx \exp\left[-\frac{1}{2}\sigma V_{M}\sigma - \sigma V_{M}M\right]$$

- \rightarrow applies to the product of same kind
- Extended Hubbard-Stratonovich transformation

$$e^{\alpha AB} = \int d\varphi \, d\phi \, e^{-\alpha \left\{ (\varphi - (A+B)/2)^2 + (\phi - i(A-B)/2)^2 \right\} + \alpha AB}$$
$$\approx \left. e^{-\alpha \left\{ \varphi^2 - (A+B)\varphi - \omega^2 + (A-B)\omega \right\}} \right|_{\text{stationary}}$$

 \rightarrow applies also to product of diff. kind

Miura, Nakano, AO, '08 Miura, Nakano, AO, Kawamoto, '09

Μ

Effective Potential

Bosonization + Dressed Fermion \rightarrow **Modification of** Mass, Chemical pot., and W.F. renormalization factor in the Strong Coupling Limit action

$$S_{\text{eff}}^{(F)} = Z_{\chi} \left[\sum_{x,y} \frac{1}{2} \left[e^{-\delta P} V_x^+ - e^{\delta \mu} V_x^- \right] + \sum_x m_g M_x \right]$$

= $Z_{\chi} \sum_{x,n,m} \bar{\chi}_{x,n} G_{nm}^{-1}(m_q; \tilde{\mu}, T) \chi_{x,m}$
• Spatially decomposed action
 \rightarrow Quark & Temporal Link Integral
in Polyakov loop $m_g M_y$

- Spatially decomposed action
 - → Quark & Temporal Link Integral in Polyakov loop
 - \rightarrow Effective potential

$$\mathcal{V}_q(m_q;\mu,T) \equiv -\frac{1}{N_\tau L^d} \log \left[\int dU_0 \,\det\left(G_{nm}^{-1}(m_q;\tilde{\mu},T)\right) \right]$$
$$= -T \log\left[X_{N_c}(E_q(m_q)/T) + 2\cosh(N_c\tilde{\mu}/T)\right]$$

 $X_N(x) = \sinh[(N+1)x] / \sinh x , \quad E_q(m_q) = \operatorname{arcsinh}(m_q)$

Effective Potential

Effective Potential in NLO SC-LQCD Miura, Nakano, AO, '08; Miura, Nakano, AO, Kawamoto, '09

$$\begin{aligned} \mathcal{F}_{\text{eff}}(\Phi;T,\mu) &= \mathcal{F}_{\text{aux}}(\Phi) + \mathcal{V}_q(\tilde{m}_q(\Phi);T,\tilde{\mu}) \\ \mathcal{F}_{\text{aux}}(\Phi) &= \frac{\tilde{b}_\sigma \sigma^2}{2} + \frac{\beta_s \varphi_s^2}{2} + \frac{\beta_\tau}{2} \left(\varphi_\tau^2 - \omega_\tau^2\right) - N_c \log Z_\chi \end{aligned}$$

Feff in NNLO SC-LQCD (Nakano, Miura, AO, in prep.)

$$\begin{split} \mathcal{F}_{\text{eff}} =& \mathcal{F}_{\text{eff}}^{(X)} + \mathcal{V}_q(m_q; \tilde{\mu}, T) - N_c \log Z_{\chi} \ ,\\ \mathcal{F}_{\text{eff}}^{(X)} =& \frac{1}{2} \tilde{b}_{\sigma} \, \sigma^2 + \frac{1}{2} \beta_s \sigma^4 + 2\beta_{ss} \sigma^6 + \frac{1}{2} (\beta_{\tau} + 2\beta_{\tau s} \sigma^2) (\varphi_{\tau}^2 - \omega_{\tau}^2) \\ &\quad + \beta_{\tau\tau} (4(Z_{\chi} m_q)^2 (\varphi_{\tau}^2 - \omega_{\tau}^2) - 4Z_{\chi} m_q \varphi_{\tau} \sigma + \sigma^2) + \beta_{\tau s} \sigma^2 (\varphi_{\tau}^2 - \omega_{\tau}^2) \ ,\\ m_q =& \frac{\tilde{b}_{\sigma} \sigma + m_0 - 2\beta_{\tau\tau} (2m'\varphi_{\tau} - \sigma)}{Z_{\chi}} = \frac{\tilde{b}_{\sigma} \sigma + m_0 + 2\beta_{\tau\tau} \sigma}{(1 + 4\beta_{\tau\tau} \varphi_{\tau}) Z_{\chi}} \ ,\\ Z_{\pm} =& 1 + (\beta_{\tau} + 2\beta_{\tau s} \sigma^2) (\varphi_{\tau} \pm \omega_{\tau}) + 4\beta_{\tau\tau} Z_{\chi} m_q (2Z_{\chi} m_q (\varphi_{\tau} \pm \omega_{\tau}) - \sigma) \ ,\\ \tilde{b}_{\sigma} =& b_{\sigma} + 2\beta_s \sigma^2 + 6\beta_{ss} \sigma^4 + 2\beta_{\tau s} (\varphi_{\tau}^2 - \omega_{\tau}^2) \ . \end{split}$$

Phase Diagram and Critical Point Evolution in NLO and NNLO SC-LQCD

Stationary Condition --- Multi-Order Parameter

Stationary Condition $\frac{\partial \mathcal{F}_{eff}}{\partial \Phi} = 0$

 $\Phi(4(\text{NLO}) / 10 \text{ (NNLO)} \text{ aux. field}) \rightarrow (\sigma, \omega_{\tau})$

Multi-Order Parameter (σ, ω_{τ})

$$\sigma \approx -\frac{\partial F_{\text{eff}}}{\partial m_0} = \text{Chiral Cond.}$$
$$\omega \approx -\frac{\partial F_{\text{eff}}}{\partial \mu} = \text{Quark number density}$$

- Two indep. var. in $V_q(\mathbf{m}, \boldsymbol{\mu})$
- Scalar (σ) and Vector (ω) potential for Quarks
- \rightarrow Saddle point in Feff(σ , ω_{τ})

Miura, Nakano, AO, Kawamoto, arXiv:0907.4245

Critical Temperature and Chemical Potential

Tc(μ =0)

 \rightarrow rapid decrease with $\beta = 2N_c/g^2$

- W.F. Renom. factor Z_{χ} \rightarrow suppression of mass
- Larger than MC results (de Forcrand '06; Gottlieb et al. '87; Gavai et al. '90)
- **a** μ_{c} (T=0)
 - \rightarrow small deps. on β
 - Suppression of mass
 ~ Suppression of μ
 - Consistent with previous results *Bilic-Demeterfi-Petersson*, '92
- NNLO ~ NLO

Phase Diagram Evolution

- Shape of the phase diagram is suppressed in T direction with β
 - → Improvements !
 - Real world value: $T_{c} \sim (160-200) \text{ MeV}$ $\mu_{c} > 350 \text{ MeV} \text{ (nuclear matter)}$ $R = \mu_{c} / T_{c} \sim (1.5-3)$
 - MC \rightarrow R > 1
 - SCL \rightarrow R ~ (0.3-0.45)
 - $N(N)LO \rightarrow R \sim 1$
- First order P.T. boundary
 - NLO: μ(CP) ~ Const.
 - NNLO: μ(CP) decreases with β

Critical Point Evolution

- Critical Point in NLO approaches µ axis
 - Larger β
 Stronger Vector Pot. ω_τ
 - Consistent with NJL models. (Kitazawa et al., '02; Sasaki-Friman-Redlich, '07; Fukushima'08)

and MC suggestion (de Forcrand-Philipsen, '08)

- **CP** in NNLO $\rightarrow \mu(CP)/T(CP) \sim 1$
 - Contradict to MC (μ/T > 1) ? (Ejiri, '08; Aoki et al.(WHOT), '08; Allton et al., '03,'05)
 - Underestimate of Tc may be
 the reason

Summary & Conclusion

- We have derived the effective potential with *next-to-leading order* (*NLO*, 1/g²) and *next-to-next-to-leading order* (*NNLO*, 1/g⁴) effects in strong coupling lattice QCD.
 - Several auxiliary fields including chiral condensate (σ) and quark number density (ρ_q) are introduced on the same footing.
 [scalar (σ) and vector (ρ_q → ω_τ) potential for quarks]
 - NLO & NNLO effects are found to modify the quark mass, dynamical chemical potential, and W.F. renormalization factor.
- NLO and NNLO effects seems to be favorable.
 - T_c(μ=0) decreases from 1.6 (SCL) to around 0.5 (NLO, NNLO), and give closer value to MC, but it is still larger.
 - μ_c (T=0) is rather stable, showing smaller effects of gluons at low T.
 - Critical point moves in the lower T direction.

Further studies incl. Polyakov loop, 1/d, meson fluc. are necessary

Backup

NNLO Effective Action

- Cumulants of two plaquettes
 - Correlation part of connected two plaquettes
- **1/d expansion:** Σ_j MM ~ Const.

12 quarks 16 quarks power in d 3 - 1/4 x 12 3 - 1/4 x 16 =0 = -1

Dressed fermion

- Next-to-nearest neighboring site interaction W[±].
 - By introducing the "Dressed Fermion", mixture of the quark field on the next temporal site, NNN interaction is rearranged to NN.

QH seminer 2009/5/29

Ohnishi, Lattice 2009 (July 26, 2009) @ Beijing

Phase diagram

Truncation Deps. in NLO

Phase diagram is sensitive to details, such as the truncation scheme in NLO.

	$\delta \mu$	\bar{m}_q	$\Delta \mathcal{F}_{aux}$	\mathcal{V}_q
NLO-A	$\log \sqrt{\frac{Z_+}{Z}}$	$\frac{m_q}{\sqrt{Z_+Z}}$	$-N_c \log \sqrt{Z_+ Z}$	$\mathcal{V}_q(\bar{m}_q,\bar{\mu},T)$
NLO-B	$\beta_{\tau}\omega_{\tau}$	$\frac{m_q}{1 + \beta_\tau \varphi_\tau}$	$-N_c \log(1 + \beta_\tau \varphi_\tau)$	$\mathcal{V}_q(\bar{m}_q, \bar{\mu}, T)$
NLO-C	$\beta_{\tau}\omega_{\tau}$	$\tilde{m}_q^{(\text{NLO}-C)}$	$-N_c\beta_\tau \varphi_\tau$	$\mathcal{V}_q(\bar{m}_q,\bar{\mu},T)$
NLO-D	0	$\tilde{m}_q^{(\text{NLO}-D)}$	$-N_c\beta_\tau \varphi_\tau$	$V_q(\bar{m}_q, \mu, T) - \beta_\tau \omega_\tau \frac{\partial V_q}{\partial \mu}$

Critical End Point in the Chiral Limit ?

- Vector field generates repulsive pot. for large ρ_q states, which may cause two local min. structure
 - → Partially Chiral Restored matter may appear.

Ohnishi, Lattice 2009 (July 26, 2009) @ Beijing

SCL

 $\beta = 2N_{c}/g^{2} = 3.0$

1.5

1

0.5

0.8

H

Effective Potential with $1/g^2$ (1)

1/d expansion of Plaquette action (Spatial One-Link Integral)

Faldt, Petersson (86); Bilic, Karsch, Redlich (92)

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N_c} \delta_{ad} \delta_{bc}$$

- Spatial plaquett $\rightarrow M\dot{M}MM$
- Temporal Link $\rightarrow V^+V^-$

$$V_x^+ = e^{\mu} \bar{\chi}_x U_0(x) \chi_{x+\hat{0}}$$
$$V_x^- = e^{-\mu} \bar{\chi}_{x+\hat{0}} U_0^{\dagger}(x) \chi_x$$

Effective Action

$$\begin{split} \Delta S_{\beta}^{(\tau)} &= \frac{1}{4N_c^2 g^2} \sum_{x,j>0} (V_x^+ V_{x+\hat{j}}^- + V_x^+ V_{x-\hat{j}}^-) \\ \Delta S_{\beta}^{(s)} &= -\frac{1}{8N_c^4 g^2} \sum_{x,k>j>0} M_x M_{x+\hat{j}} M_{x+\hat{k}} M_{x+\hat{k}+\hat{j}} \end{split}$$

Lattice QCD

Lattice QCD=ab initio, non-perturbative theory (c.f. Teper's talk)

$$S_{\text{LQCD}} = \frac{1}{2} \sum_{x,j} \left[\eta_{\nu,x} \bar{\chi}_x U_{\nu,x} \chi_{x+\hat{\nu}} - \eta_{\nu,x}^{-1} \bar{\chi}_{x+\hat{\nu}} U_{\nu,x}^{\dagger} \chi_x \right] - \frac{1}{g^2} \sum_{\Box} \text{tr} \left[U_{\Box} + U_{\Box}^{\dagger} \right] + m_0 \sum_x \bar{\chi}_x \chi_x$$

$$U_{\nu}^{+} \underbrace{U_{\mu}}_{U_{\mu}}^{+} U_{\nu} \qquad \overbrace{\chi}_{U_{\mu}} \underbrace{U_{\mu}}_{\chi} \chi \qquad \overbrace{\chi}_{\mu}^{+} \overline{\chi}_{\mu} M = \overline{\chi} \chi$$

- Problems to overcome
 - DOF is too much, and MC is necessary for numerical integration
 → Faster Computer + Faster Algorithm
 - Doublers appear for chiral fermions \rightarrow different types of fermions
 - Weight for gluon config. (Fermion determinant) becomes complex at finite μ
 - \rightarrow Taylor expansion, Analytic Continuation, Canonical, ...
 - → Not Yet Applicable for Dense and Cold Matter !

Strong Coupling Limit/Expansion makes it possible to obtain (approx.) Effective Potential analytically !

Strong Coupling Lattice QCD: Pure Gauge

- Quarks are confined in Strong Coupling QCD
 - Strong Coupling Limit (SCL)
 → Fill Wilson Loop
 - with Min. # of Plaquettes
 - → Area Law (Wilson, 1974)

$$S_{\rm LQCD} = -\frac{1}{g^2} \sum_{\Box} \operatorname{tr} \left[U_{\Box} + U_{\Box}^{\dagger} \right]$$

 Smooth Transition from SCL to pQCD in MC (Creutz, 1980) *K. G. Wilson, PRD10(1974),2445 M. Creutz, PRD21(1980), 2308. G. Munster, 1981*

N_t

Strong Coupling Limit of LQCD with Quarks

N. Kawamoto, NPB190('81),617, N. Kawamoto, J. Smit, NPB192('81)100 Kluberg-Stern, Morel, Napoly, Petersson, 1981

- How about spontaneous chiral symmetry breaking ?
- Strong Coupling Limit (SCL) of Lattice QCD with Quarks
 - No Plaquette in SCL
 - → Mesonic Effective Action from One Link Integral
 - \rightarrow Effective Potential in σ and π from contour integral
 - \rightarrow SSB of the Chiral Sym.

Chiral Transition at Finite Temperature

P.H.Damgaard, N. Kawamoto, K.Shigemoto, PRL53('84),2211; NPB264 ('86), 1 Faldt, Petersson, 1986; Bilic, Karsch, Redlich, 1992; Fukushima,2004, Nishida, 2004

Chiral Symmetry would be restored at high temperature → SCL-LQCD at Finite Temperatures

- Staggered Fermion
 with Anti-Periodic B.C.
 → Matsubara Product
- Polyakov gauge & Group integral (Vandermonde determinant)
- Effective Potential (U(3))

$$V_{\rm eff} = \frac{1}{4} N\beta d\sigma^2 - \ln\left\{\frac{\sinh[(N+1)\beta s]}{\sinh(\beta s)}\right\}$$

 \rightarrow Chiral Phase Transition at T_c = 2.5 a⁻¹

Chiral Phase Transition at Finite Density

P.H.Damgaard, D. Hochberg, N. Kawamoto, PLB158('86)239 Hasenfatz, Karsch, 1983; Azcoiti et al., 2003; Kawamoto, Miura, AO, Ohnuma, 2007

- QCD phase transition is also expected at high density
 - Baryon Rich QGP and/or Color SuperConductor are expected in the Neutron Star Core
- Strong Coupling Limit in SU(N)

Ohnishi, Lattice 2009 (July 26, 2009) @ Beijing

Evolution of Phase Diagram as a function of Time

- Phase Diagram "Shape" becomes closer to that of Real World, R=3 μ_c/T_c ~ (6-12)
 - $1985 \rightarrow R=0.79$ (Zero T / Finite T)
 - 1992 \rightarrow R=0.83 (Finite T & μ)
 - 2004 \rightarrow R= 0.99 (Finite T& μ)

• 2007
$$\rightarrow$$
 R=1.34 (Baryon)

T Damgaad, Kawamoto, Finite T
Shigemoto, 1984
$$T_c=1.1$$
 GeV
Conjecture !
Damgaad, Hochberg,
Kawamoto, 1985
Finite μ
1985 $\mu_c=290$ MeV

Towards the Realistic Phase Diagram

- Why we cannot explain the phase diagram shape ? $\rightarrow N_f$ (Staggered fermion) ? quark mass ? Finite Coupling ?
 - μ_c (SCL) ~ $M_N/3$ (within a factor 2), T_c (SCL) >> 200 MeV
 - \rightarrow Larger problem should be in T_c, rather than in μ_c

Expectation before Calc.

Preliminary Resuls with 1/g²reffects

 $\beta=6/g^2$ AO, Kawamoto, Miura, 2007

Gluon Contribution is important at High T

Effective Potential in SCL-LQCD

VITP Kyoto

Ohnishi, Lattice 2009 (July 26, 2009) @ Beijing

Effective Potential with $1/g^2$ (1)

1/d expansion of Plaquette action (Spatial One-Link Integral)

Faldt, Petersson (86); Bilic, Karsch, Redlich (92)

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N_c} \delta_{ad} \delta_{bc}$$

- Spatial plaquett $\rightarrow M\dot{M}MM$
- Temporal Link $\rightarrow V^+V^-$

$$V_x^+ = e^{\mu} \bar{\chi}_x U_0(x) \chi_{x+\hat{0}}$$
$$V_x^- = e^{-\mu} \bar{\chi}_{x+\hat{0}} U_0^{\dagger}(x) \chi_x$$

Effective Action

$$\begin{split} \Delta S_{\beta}^{(\tau)} &= \frac{1}{4N_c^2 g^2} \sum_{x,j>0} (V_x^+ V_{x+\hat{j}}^- + V_x^+ V_{x-\hat{j}}^-) \\ \Delta S_{\beta}^{(s)} &= -\frac{1}{8N_c^4 g^2} \sum_{x,k>j>0} M_x M_{x+\hat{j}} M_{x+\hat{k}} M_{x+\hat{k}+\hat{j}} \end{split}$$

