Lambda hypernuclei and neutron star matter in chiral SU(3) RMF

A. Ohnishi (YITP, Kyoto Univ.)

- Introduction
- Chiral Collapse and Effective Potential in SCL-LQCD
- RMF with a logarithmic σ potential (SUf(2)) *Tsubakihara, AO, PTP 117('07)903.*
- Hypernuclei and Hyperonic Matter in Chiral SU(3) RMF Tsubakihara, Maekawa, AO, EPJA33('07)295 [nucl-th/0702008] Tsubakihara, Matsumiya, Maekawa, AO, AIP Conf. Proc.,1016 (2008), 288. Tsubakihara, Matsumiya, Maekawa, AO, to be submited.
- Summary

What happens at High Densities ?

Particle composition in Neutron Star Core

- \rightarrow n, p, e, μ , Y(Hyperons), mesons (π , K), quarks, quark pair (CFL, ..)
- \rightarrow *Strangeness* is the key ingredient !
- Particle property at High Density
 - → Partial restoration of the chiral symmetry
 - → Hadron mass modification (CERES, KEK-E325, PHENIX,....)

Hyperons during Black Hole Formation

- Hot matter (~ 70 MeV) is formed during Black Hole formation
 - \rightarrow Many hyperons appear \rightarrow EOS is softened
 - → Earlier formation of BH
 - \rightarrow Shorter v emission time

High density EOS may be probed by v (not only with NS/GW).

Hadron Mass Modification

Medium meson mass modification is suggested experimentally.

CERES Collab., PRL75('95),1272; KEK-E325 Collab.(Ozawa et al.), PRL86('01),5019; PHENIX Collab., arXiv:0706.3034

Interpretation is model dependent → *Investigation in non-perturbative QCD is desired !*

Purpose of This Work

- Strangeness & Chiral Sym. are the keys in understanding dense matter
- We are aiming at developing a nuclear many-body theory,
 - (1) which explains nuclear matter saturation property,
 - (2) does not contradict to nuclear ab initio calculations,
 - (3) well describes bulk properties (B.E., rmsr) of normal nuclei
 - (4) and hypernuclei,
 - (5) possesses the chiral symmetry,
 - (6) explains known properties of neutron stars,
 - (7) explodes supernovae,
 - (8) and has clear relation to QCD.
- There are many problems to be solved.
 - Chiral Collapse problem (Lee-Wick vacuum)
 - Lattice QCD at finite density (sign problem)

We try to develop an RMF model with the free energy density (effective potential) derived from SCL-LQCD.

Long ways from QCD to Nuclei

Ohnishi, QH Seminar, 2009/05/01

Disclaimer

- We work is based on
 - the Strong Coupling Limit (SCL) of Lattice QCD
 - in the zero T treatment,
 - with $n_f (=1, 2, 3)$ staggered fermions, which corresponds to $N_f = 4n_f flavors$.
 - \rightarrow The effective potential may be different in continuum theory with 2+1 flavors.
- We have adopted the SCL-LQCD results of the scalar meson selfinteraction. Baryons, vector mesons, and their couplings are introduced and determined phenomenologically.
- Nevertheless, the present results show that we can improve RMF by using the idea from QCD !

Chiral Collapse & Effective Potential in SCL-LQCD

Chiral Collapse Problem

- Chiral symmetry = Fundamental Symmetry of QCD
 - SSB of χ sym. \rightarrow Hadron masses + NG boson (π)

YITP Kyot

χ sym. should also persist in hadron many-body problems

Schematic model : Linear σ model $\rightarrow \chi$ sym. is restored below ρ_0

Lee, Wick, 1974

$$L = \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \partial^{\mu} \pi \right) - \frac{\lambda}{4} \left(\sigma^{2} + \pi^{2} \right)^{2} + \frac{\mu^{2}}{2} \left(\sigma^{2} + \pi^{2} \right) + c \sigma$$

$$+ \overline{N} i \partial_{\mu} \gamma^{\mu} N - g_{\sigma} \overline{N} \left(\sigma + i \pi \tau \gamma_{5} \right) N$$

ε (m_σ=600 MeV, ρ_B=0-5 ρ₀)

Unnisni, Uri seminar, 2009/05/01

How can we avoid Chiral Collapse?

- We need
 - Very Strong Repulsion at small σ

or

Ohnishi, QH Seminar, 2009/05/01

Various Attempts to Cure Chiral Collapse

■ ϕ^4 Theory (Gell-Mann, Levy) → Collapse

 $V_{\sigma}^{(\phi^4)} = \frac{\lambda}{4} (\phi^2 - f_{\pi}^2)^2 + \frac{1}{2} m_{\pi}^2 \phi^2 - f_{\pi} m_{\pi}^2 \sigma \ , \quad \lambda = \frac{m_{\sigma}^2 - m_{\pi}^2}{2f_{\pi}^2}$

NJL (Quark Loop, e.g. Hatsuda, Kunihiro) \rightarrow Collapse

$$V_{\sigma}^{\text{NJL}} = \frac{m_0^2}{2}\sigma^2 + \Lambda^4 f_{\text{NJL}}\left(\frac{G\sigma}{\Lambda}\right) - f_{\pi}m_{\pi}^2\sigma \qquad f_{\text{NJL}}(x) = -\frac{N_c N_f}{4\pi^2} \left[\left(1 + \frac{x^2}{2}\right)\sqrt{1 + x^2} - 1 - \frac{x^4}{2}\log\left(\frac{1 + \sqrt{1 + x^2}}{x}\right) \right]$$

Baryon Loop (Matsui, Serot) \rightarrow Unstable at large σ

$$V_{\sigma}^{\rm BL} = \frac{m_{\sigma}^2}{8f_{\pi}^2}(\phi^2 - f_{\pi}^2)^2 - M_N^4 f_{\rm BL}(\phi/f_{\pi}) \qquad f_{\rm BL}(x) = -\frac{1}{4\pi^2} \left[\frac{x^4}{2}\log x^2 - \frac{1}{4} + x^2 - \frac{3}{4}x^4\right]$$

Higher order terms (E.g. Sahu, AO) \rightarrow Unstable at large σ

$$V_{\sigma}^{\rm SO} = \frac{m_{\sigma}^2}{8f_{\pi}^2}(\phi^2 - f_{\pi}^2)^2 + f_{\pi}^4 f_{\rm SO}(\phi/f_{\pi}) \qquad f_{\rm SO}(x) = \frac{C_6}{6}(x^2 - 1)^3 + \frac{C_8}{8}(x^2 - 1)^4$$

- Log type term from scale anomaly (Furnstahl, Serot; Heide et al.)
- **Log type term from SCL-LQCD (Tsubakihara, AO)** $V_{\sigma}^{\text{SCL}} = V_{\chi}(\sigma, \pi) - c_{\sigma} \sigma = \frac{1}{2} b_{\sigma} \phi^2 - a_{\sigma} \log \phi^2 - c_{\sigma} \sigma$

Non-Linear σN coupling (Saito, Tsushima, Thomas ; Bentz, Thomas)

RMF with Chiral Symmetry: Chiral Collapse

- **Naïve Chiral RMF models** \rightarrow Chiral collapse at low ρ *(Lee-Wick 1974)*
- Prescriptions
 - σω coupling (too stiff EOS)
 (Boguta 1983, Ogawa et al. 2004)
 - Loop effects (unstable at large σ) (Matsui-Serot, 1982, Glendenning 1988, Prakash-Ainsworth 1987, Tamenaga et al. 2006)
 - Higher order terms (unstable at large σ) (*Hatsuda-Prakash 1989, Sahu-Ohnishi 2000*)
 - Dielectric (Glueball) Field representing scale anomaly (Furnstahl-Serot 1993,Heide-Rudaz-Ellis 1994, Papazoglou et al.(SU(3)) 1998)
 - Different Chiral partner assignment (DeTar-Kunihiro 1989, Hatsuda-Prakash 1989) Harada-Yamawaki 2001, Zschiesche-Tolos-Schaffner-Bielich-Pisarski, nucl-th/0608044)
 - Nucleon Structure (Saito-Thomas 1994, Bentz-Thomas 2001)

$$L = \frac{1}{2} \left(\partial_{\mu} \sigma \, \partial^{\mu} \sigma + \partial_{\mu} \pi \, \partial^{\mu} \pi \right)$$
$$- \frac{\lambda}{4} \left(\sigma^{2} + \pi^{2} \right)^{2} + \frac{\mu^{2}}{2} \left(\sigma^{2} + \pi^{2} \right) + c \sigma$$
$$+ \overline{N} i \partial_{\mu} \gamma^{\mu} N - g_{\sigma} \overline{N} \left(\sigma + i \pi \tau \gamma_{5} \right) N$$

Lattice QCD

Lattice QCD=ab initio, non-perturbative theory (c.f. Teper's talk)

$$S_{\text{LQCD}} = \frac{1}{2} \sum_{x,j} \left[\eta_{\nu,x} \bar{\chi}_x U_{\nu,x} \chi_{x+\hat{\nu}} - \eta_{\nu,x}^{-1} \bar{\chi}_{x+\hat{\nu}} U_{\nu,x}^{\dagger} \chi_x \right] - \frac{1}{g^2} \sum_{\Box} \text{tr} \left[U_{\Box} + U_{\Box}^{\dagger} \right] + m_0 \sum_x \bar{\chi}_x \chi_x$$

- Problems to overcome
 - DOF is too much, and MC is necessary for numerical integration
 → Faster Computer + Faster Algorithm
 - Doublers appear for chiral fermions \rightarrow different types of fermions
 - Weight for gluon config. (Fermion determinant) becomes complex at finite μ
 - → Taylor expansion, Analytic Continuation, Canonical, ...
 - → Not Yet Applicable for Dense and Cold Matter !

Strong Coupling Limit/Expansion makes it possible to obtain (approx.) Effective Potential analytically !

Strong Coupling Lattice QCD: Pure Gauge

- Quarks are confined in Strong Coupling QCD
 - Strong Coupling Limit (SCL)
 - → Fill Wilson Loop with Min. # of Plaquettes
 - → Area Law (Wilson, 1974)

$$S_{\rm LQCD} = -\frac{1}{g^2} \sum_{\Box} \operatorname{tr} \left[U_{\Box} + U_{\Box}^{\dagger} \right]$$

Smooth Transition from SCL to pQCD in MC (Creutz, 1980) *K. G. Wilson, PRD10(1974),2445 M. Creutz, PRD21(1980), 2308. G. Munster, 1981*

N_t

Ohnishi, QH Seminar, 2009/05/01

Strong Coupling Lattice QCD with Quarks (1)

- No Plaquette in SCL→ One Link Integral → Mesonic Eff. Action → Eff. Pot. → SSB of χ Sym.
- Strong Coupling Limit (Zero T treatment) → log type potential of σ N. Kawamoto, NPB190('81),617, N. Kawamoto, J. Smit, NPB192('81)100 Kluberg-Stern, Morel, Napoly, Petersson, 1981

$$V = N[\frac{1}{2}\ln(\sigma^2 + \pi^2) - M\sigma - dF(\sigma^2 + \pi^2)]$$

SCL (Finite T Treatment) → arcsinh type potential of σ P.H.Damgaard, N. Kawamoto, K.Shigemoto, PRL53('84),2211; NPB264 ('86), 1 Faldt, Petersson, 1986; Bilic, Karsch, Redlich, 1992; Fukushima,2004, Nishida, 2004

$$\mathcal{F}_{\text{eff}} = \frac{d}{4N_c}\sigma^2 + \mathcal{V}_q\left(\frac{d\sigma}{2N_c} + m_0; \mu, T\right) \quad \mathcal{V}_q(m_q; \mu, T) = -T\log\left[\frac{\sinh[(N_c + 1)\operatorname{arcsinh}(m_q)/T]}{\sinh[\operatorname{arcsinh}(m_q)/T]} + 2\cosh(N_c\mu/T)\right]$$

Strong Coupling Lattice QCD with Quarks (2)

With Baryons

P.H.Damgaard, D. Hochberg, N. Kawamoto, PLB158('86)239; Hasenfatz, Karsch, 1983; Azcoiti et al., 2003; Kawamoto, Miura, AO, Ohnuma, 2007.

$$\mathcal{F}_{\text{eff}} = \frac{b_{\sigma}}{2}\sigma^2 + \mathcal{V}_{q}\left(m_{q}; \mu, T\right) + \Delta \mathcal{V}_{b}(g_{\sigma}\sigma) \quad \Delta \mathcal{V}_{b}(x) = -f^{(b)}\left(\frac{\pi x}{8}\right) \quad f^{(b)}(x) = \frac{1}{2}\log(1+x^2) - \frac{1}{x^3}\left[\arctan x - x + \frac{x^3}{3}\right] - \frac{3}{5}x^2$$

- Next-to-Leading Order correction → $\sigma \omega$ model of quarks *N. Bilic, F. Karsch, K. Redlich, 1992, AO, N. Kawamoto, K. Miura, 2007.* $\mathcal{F}_{eff} = \frac{1}{2}b_{\sigma}\sigma^{2} + \beta_{s}\varphi_{s}\sigma^{2} + \frac{\beta_{\tau}}{2}(\varphi_{\tau}^{2} - \omega_{\tau}^{2}) + \frac{\beta_{s}}{2}\varphi_{s}^{2} + \mathcal{V}_{q}(m_{q};\tilde{\mu},T) - N_{c}\log Z$ $\varphi_{s} = \sigma^{2}, \quad \varphi_{\tau} = \frac{2\varphi_{0}}{1 + \sqrt{1 + 4\beta_{\tau}\varphi_{0}}} \qquad \sigma = -\frac{1}{Z}\frac{\partial\mathcal{V}_{q}}{\partial m_{q}} \qquad \omega_{\tau} = -\frac{\partial\mathcal{V}_{q}}{\partial\tilde{\mu}} = \rho_{q}$
 - σ : chiral condensate, ω : vector potential

T.Z.Nakano, K. Miura, AO, in preparation.

Higher order terms of $1/g^2 \rightarrow Non-linear$ terms of mesons

Effective Potential in SCL-LQCD (Zero T)

Effective Potential

Effective Potential in SCL-LQCD

$$U(\sigma) = \frac{1}{2} b_{\sigma} \sigma^2 - N_c \log \sigma \quad (b_{\sigma} = (d+1)/2N_c)$$

n_f species of staggered fermion

 σ in one species of staggered fermions

$$\rightarrow \boldsymbol{\sigma}_{\alpha\beta} \text{ in } \boldsymbol{n}_{f} \text{ species of staggered fermions}$$

$$\mathcal{Z} = \int \mathcal{D}[\chi, \bar{\chi}, U] \exp\left(-S_{F}[\chi, \bar{\chi}, U]\right) \simeq \int \mathcal{D}[\chi, \bar{\chi}] \exp\left[\frac{1}{2} \sum_{x, y, \alpha, \beta} \mathcal{M}_{\alpha\beta}(x) V_{M}(x, y) \mathcal{M}(y)_{\beta\alpha}\right]$$

$$= \int \mathcal{D}[\chi, \bar{\chi}, \sigma] \exp\left(-S_{\sigma}[\chi, \bar{\chi}, \sigma]\right)$$

$$S_{\sigma} = \frac{1}{2} \sum_{x, y, \alpha, \beta} \sigma(x)_{\alpha\beta} V_{M}(x, y) \sigma(y)_{\beta\alpha} + \sum_{x, y, \alpha, \beta} \sigma(y)_{\alpha\beta} V_{M}(y, x) \mathcal{M}(x)_{\beta\alpha} \qquad \begin{array}{c} \mathcal{M}_{\alpha\beta}(x) = \bar{\chi}_{\alpha}^{a}(x) \chi_{\beta}^{a}(x) \\ V_{M}(x, y) = \sum_{\mu} (\bar{\delta}_{y, x+\hat{\mu}} + \bar{\delta}_{y, x-\hat{\mu}}) / 4N_{\sigma} \end{array}$$

Mean field ansatz of the meson field

$$\sigma_{\alpha\beta}(x) = \Sigma_{\alpha\beta} + i\epsilon(x)\Pi_{\alpha\beta}$$

 $\epsilon = 1$ (even site), -1 (odd site) $\rightarrow \sigma = M$ (even), M⁺(odd)

Effective Potential (Free Energy Density) in the Lattice Unit

$$V_{\chi}(\sigma,\pi) = \frac{1}{2} \langle \operatorname{tr} \left[\sigma V_M \sigma \right] \rangle - N_c \langle \log \det(V_M \sigma) \rangle = \frac{1}{2} b_\sigma \operatorname{tr} \left[M^{\dagger} M \right] - \frac{a_\sigma}{2} \log \det \left[M^{\dagger} M \right]$$

Chiral SU_f(2) Relativistic Mean Field with a Logarithmic σ Potential

Chiral RMF

RMF Lagrangian

$$\begin{aligned} \mathcal{C}_{\chi} &= \overline{\psi}_{N} \left[i \partial \!\!\!/ - g_{\sigma} (\sigma + i \gamma_{5} \boldsymbol{\tau} \cdot \boldsymbol{\pi}) - g_{\omega} \psi - g_{\rho} \boldsymbol{\tau} \cdot \boldsymbol{\rho} \right] \psi_{N} \\ &+ \frac{1}{2} \left(\partial^{\mu} \sigma \partial_{\mu} \sigma + \partial^{\mu} \boldsymbol{\pi} \cdot \partial_{\mu} \boldsymbol{\pi} \right) - V_{\sigma} (\sigma, \boldsymbol{\pi}) \\ &- \frac{1}{4} W^{\mu\nu} W_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} + \frac{c_{\omega}}{4} (\omega^{\mu} \omega_{\mu})^{2} - \frac{1}{4} R^{\mu\nu} \cdot R_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \boldsymbol{\rho}^{\mu} \cdot \boldsymbol{\rho}_{\mu} \end{aligned}$$

- Mesons: σ , ω , ρ (π is omitted in MFA)
- ω⁴ term is added phenomenologically to simulate RBHF results
- $V_{\sigma}(\sigma, \pi)$: chiral potential + explicit χ breaking term (Coef. are chosen to fit meson masses \rightarrow One parameter m_{σ} is left) $V_{\sigma}^{SCL} = V_{\chi}(\sigma, \pi) - c_{\sigma} \sigma = \frac{1}{2} b_{\sigma} \phi^2 - a_{\sigma} \log \phi^2 - c_{\sigma} \sigma$ $\phi^2 = \sigma^2 + \pi^2 \quad a_{\sigma} = \frac{f_{\pi}^2}{4} (m_{\sigma}^2 - m_{\pi}^2) , \quad b_{\sigma} = \frac{1}{2} (m_{\sigma}^2 + m_{\pi}^2) , \quad c_{\sigma} = f_{\pi} m_{\pi}^2$
- Remaining parameters: g_{ω} , g_{ρ} , c_{ω}

Nuclear Matter EOS

Energy Density

$$E/V = g_N \int^{p_F} \frac{dp}{(2\pi)^3} \sqrt{p^2 + M_N^{*2}(\sigma)} + g_\omega \omega \rho_B - \frac{m_\omega^2}{2} \omega^2 - \frac{c_\omega}{4} \omega^4 + V_\sigma(\sigma)$$

Relevant par. = g_{ω} , c_{ω} , m_{σ}

 \rightarrow Fit saturation point (ρ_0 , E/A)=(0.145 fm⁻³, -16.3 MeV) (One pamameter (e.g. m_n) remains.)

EOS is as soft as TM1 (Non-chiral RMF)

Eqation Of State

Finite Nuclei (1)

Total Energy

$$E = \sum_{i,\kappa,\alpha} n_{i\kappa\alpha}^{\rm occ} \varepsilon_{i\kappa\alpha} - \frac{1}{2} \int \left\{ -g_{\sigma}\varphi\rho_{S} + g_{\omega}\omega\rho_{B} + g_{\rho}R\rho_{\tau} + e^{2}A\rho_{B}^{p} \right\} dr + \int \left(V_{\varphi} - \frac{1}{2}\varphi\frac{dV_{\varphi}}{d\varphi} + \frac{c_{\omega}}{4}\omega^{4} \right) dr$$

- Free par. = $m_{\sigma}^{}$, $g_{\rho}^{} \rightarrow$ Fit B.E. of Sn and Pb isotopes $m_{\sigma}^{}$ =503 MeV, $g_{\rho}^{}$ =4.40
- Problem
 - Underestimate of B.E.
 of light jj-closed nuclei
 → π effects ?
 - Underestimate of Zn isotopes

 → Deformation
 (Nuclei are assumed to be spherical here.)
 D. Hirata, et al., 1997
 Sugahara, Toki, 1994

Ohnishi, QH Seminar, 2009/05/01

Finite Nuclei (2)

- Detailed Comparison of B.E. with other models
 - SCL is comparable with "High precision" non-chiral RMF models (TM1/2, NL1, NL3)
 - much better than another chiral models (glueball model)

$B/A ~({ m MeV})$										
Nucleus	exp.	SCL	TM1	TM2	NL1	NL3	I/110	IF/110	$\operatorname{VIIIF}/100$	QMC-I
¹² C	7.68	7.09	-	7.68	-	-	-	-	-	-
¹⁶ O	7.98	8.06	-	7.92	7.95	8.05	7.35	7.86	7.18	5.84
²⁸ Si	8.45	8.02	-	8.47	8.25	-	-	-	-	-
^{40}Ca	8.55	8.57	8.62	8.48	8.56	8.55	7.96	8.35	7.91	7.36
^{48}Ca	8.67	8.62	8.65	8.70	8.60	8.65	-	-	-	7.26
⁵⁸ Ni	8.73	8.54	8.64	-	8.70	8.68	-	-	-	-
90 Zr	8.71	8.69	8.71	-	8.71	8.70	-	-	-	7.79
116 Sn	8.52	8.51	8.53	-	8.52	8.51	-	-	-	-
¹⁹⁶ Pb	7.87	7.87	7.87	-	7.89	-	-	-	-	-
²⁰⁸ Pb	7.87	7.87	7.87	-	7.89	7.88	7.33	7.54	7.44	7.25

NL1: Reinhard et al. (Frankfurt group), 1986NL3: Lalazissis, Konig, Ring, 1997Glueball model: Heide, Rudaz, Ellis, 1994QMC: Saito, Tsushima, Thomas, 1997

Short Summary of Chiral SU_f(2) RMF

We have developed an SU_f(2) chiral symmetric RMF with a logarithmic σ potential derived from SCL-LQCD.

Judge

- (1) which explains nuclear matter saturation property $\rightarrow 0$
- (2) does not contradict to nuclear ab initio calculations
 - $\rightarrow \Delta$ (Vector pot. is similar to RBHF, no pions)
- (3) well describes bulk properties (B.E., rmsr) of normal nuclei → O (at least for heavy nuclei)
- (4) and hypernuclei $\rightarrow X$
- (5) possesses the chiral symmetry $\rightarrow \mathbf{O}$
- (6) explains known properties of neutron stars \rightarrow ?(not yet studied)
- (7) explodes supernovae \rightarrow ? (not yet studied)
- (8) and has clear relation to QCD. $\rightarrow \Delta$ (see, Disclaimer)

It is promising. We should go to SU_f(3).

Hypernuclei and Nuclear Matter EOS in Chiral SU_f(3) Relativistic Mean Field

Chiral SU_f(3) Potential (1)

- Characteristic features in SU_f(3)
 - Hidden strangeness (s sbar) mesons can have expectation values.
 - \rightarrow scalar (ς) and vector (ϕ) mesons (*Glendenning*, *Schaffner*, *Gal*, ...)
 - s quark mass is not small
 - Axial $(U_{\Lambda}(1))$ anomaly has to be included.

Kobayashi, Maskawa, 1970, 't Hooft, 1976

Chiral SUf(3) Potential

SCL-LQCD (Zero T treatment)+ Explicit χ breaking Kobavashi-Maskawa-'t Hooft term (U.(1) anomaly)

$$V_{\chi} = -\frac{a'}{2} \log \left(\det M' M'^{\dagger} \right) + \frac{b'}{2} \operatorname{tr} \left(M M^{\dagger} \right) - c_{\sigma} \sigma - c_{\zeta} \zeta + V_{KMT}$$
SCL-LQCD A Axial Anomaly
Explicit

• $M = \Sigma + i \Pi = Meson Matrix$

 $M_{11} \equiv \left(\frac{a_0^0}{\sqrt{2}} + \frac{\sigma}{\sqrt{2}}\right) + i\left(\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}}\right)$ $M = \begin{pmatrix} M_{11} & a_0^+ + i\pi^+ & \kappa^0 + iK^+ \\ a_0^- + i\pi^- & M_{22} & \kappa^0 + iK^0 \\ \kappa^- + iK^- & \bar{\kappa}^0 + i\bar{K}^0 & M_{33} \end{pmatrix} \qquad \begin{pmatrix} \sqrt{2} & \sqrt{2} & \sqrt{6} & \sqrt{3} \end{pmatrix} \qquad M' = M + \text{diag}(0, 0, \delta_{\zeta}) \\ M_{22} \equiv \begin{pmatrix} -\frac{a_0^0}{\sqrt{2}} + \frac{\sigma}{\sqrt{2}} \end{pmatrix} + i \begin{pmatrix} -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}} \end{pmatrix} \qquad M' = M + \text{diag}(0, 0, \delta_{\zeta}) \\ M_{33} \equiv \zeta + i \begin{pmatrix} -\frac{2\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}} \end{pmatrix}$

Chiral SU_f(3) Potential (2)

Decomposition into mass and interaction terms

$$V_{\chi} = \frac{1}{2} m_{\sigma} \varphi_{\sigma}^{2} + \frac{1}{2} m_{\zeta} \varphi_{\zeta}^{2} + V_{\sigma\zeta}(\varphi_{\sigma}, \varphi_{\zeta})$$

$$+ \frac{1}{2} \sum_{\alpha} m_{\alpha}^{2} \varphi_{\alpha}^{2} + \delta V(\varphi_{\sigma}, \varphi_{\zeta}, \{\phi_{\alpha}\})$$

$$\varphi_{\sigma} = f_{\pi} - \sigma$$
Deviation from
vacuum values
$$\varphi_{\zeta} = f_{\zeta} - \zeta$$

$$\pi, K, \dots \text{ interaction terms}$$

$$\pi, K, \dots$$

Interaction term of
$$(\sigma, \varsigma)$$

 $V_{\sigma\zeta} = -a' \left[2f_{SCL} \left(\frac{\varphi_{\sigma}}{f_{\pi}} \right) + f_{SCL} \left(\frac{\varphi_{\zeta}}{f_{\zeta}'} \right) \right] + \xi_{\sigma\zeta} \varphi_{\sigma} \varphi_{\zeta}$
 $f_{SCL}(x) = \log(1-x) + x + \frac{x^2}{2}$

• σ and ς mixes through KMT ($\phi_{\sigma}^{2} \phi_{\varsigma}$ term is omitted)

Chiral SU_f(3) RMF (for Normal and A nuclei)

Chiral SU_i(3) RMF Lagrangian (SCL3) $\mathcal{L} = \sum_{i} \bar{\psi}_{i} [i\partial - M_{i}^{*} - \gamma_{\mu}U_{i}^{\mu}]\psi_{i} \qquad \text{Baryons (N, \Lambda)} \qquad \text{Mesons(free)}$ $-\frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu} + \frac{m_{\omega}^{2}}{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}R_{\mu\nu}R^{\mu\nu} + \frac{m_{\rho}^{2}}{2}R_{\mu}R^{\mu} - \frac{1}{4}\phi_{\mu\nu}\phi^{\mu\nu} + \frac{m_{\phi}^{2}}{2}\phi_{\mu}\phi^{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ $+\frac{1}{2}\partial_{\mu}\varphi_{\sigma}\partial^{\mu}\varphi_{\sigma} - \frac{1}{2}m_{\sigma}^{2}\varphi_{\sigma}^{2} + \frac{1}{2}\partial_{\mu}\varphi_{\zeta}\partial^{\mu}\varphi_{\zeta} - \frac{1}{2}m_{\zeta}^{2}\varphi_{\zeta}^{2} + \frac{c_{\omega}}{4}(\omega_{\nu}\omega^{\nu})^{2} - V_{\sigma\zeta}(\varphi_{\sigma},\varphi_{\zeta})$ $M_{i}^{*} = M_{i} - g_{\sigma i}\varphi_{\sigma} - g_{\zeta i}\varphi_{\zeta} \qquad U_{i}^{\mu} = g_{\omega i}\omega^{\mu} + g_{\rho i}R^{\mu} + \frac{1 + \tau_{3}}{2}eA^{\mu} \qquad \omega \text{ int.} \qquad \chi \text{ int.}$

Parameter Fitting

- Vacuum part ($V_{\sigma\varsigma}$) 6 pars. \rightarrow Fit f_{π} , f_{K} , m_{π} , m_{K} , M_{ς} (f0(980)) \rightarrow 1 par. (e.g. m_{σ})
- Nucleon part (assumed not to couple with s^{bar}s) 1 + 3 pars. (m_s, g_w, c_w, g_p) → Saturation Point (2) + Finite Nuclei (2)
- A part

4 pars. ($g_{\sigma}, g_{\zeta}, g_{\omega}, g_{\phi}$) \rightarrow SU_f(3) relation for vector (2)

Nuclear Matter

- Nuclear Matter EOS
 - Softer than other RMF models incl. SCL2 (K ~ 210 MeV).
 - Agrees with Friedman-Pandharipande (FP) EOS at around ρ_0

(Softer than FP EOS at higher densities) *Friedman, Pandharipande, 1981*

Scalar and Vector Potentials

Agree with RBHF results. *Brockmann, Toki, 1992*

Ohnishi, QH Seminar, 2009/05/01

Finite Normal Nuclei and Hypernuclei

- Normal Nuclei
 - B.E. and Charge RMSR are well described with c_ω = 295, g_{ρN}=4.54, m_σ= 690 MeV

Single Hypernuclei

• Similar sep. E. (S_{Λ}) are obtained if the scalar potential depth is fixed. $U_{\Lambda}^{(S)}(\rho) = g_{\sigma\Lambda}\sigma(\rho) + g_{\zeta\Lambda}\zeta(\rho)$

Double Hypernuclei

Ohnishi, QH Seminar, 2009/05/01

Neutron Stars

- Neutron star matter
 = Cold and dense charge neutral matter under v-less β equilibrium.
- EOS in SCL3-RMF is much softer than others at high densities.
 - small $g_{\omega N}$, large $c_{\omega} \rightarrow$ suppression of vector potential at high ρ_B
- SCL3-RMF with Λ (SCL3 Λ) \rightarrow Max. mass of NS < 1.44 M_{sun}

Ohnishi, QH Seminar, 2009/05/01

Summary

- We have developed an SU_f(3) "chiral symmetric" RMF with a logarithmic potential of scalar condensates derived from SCL-LQCD.
 - Hidden strangeness scalar meson (ζ) is found to soften the EOS through the coupling with σ (KMT interaction).
- Judge
 - (1) which explains nuclear matter saturation property $\rightarrow 0$
 - (2) does not contradict to nuclear ab initio calculations
 - \rightarrow O' (Vector pot. is similar to RBHF, EOS ~ FP)
 - (3) well describes bulk properties (B.E., rmsr)
 - of normal nuclei
 - \rightarrow O' (at least for heavy nuclei, worse than SCL2)
 - (4) and hypernuclei \rightarrow **O**
 - (5) possesses the chiral symmetry $\rightarrow 0$
 - (6) explains known properties of neutron stars $\rightarrow \mathbf{X}$
 - (7) explodes supernovae \rightarrow ? (not yet studied)
 - (8) and has clear relation to QCD. $\rightarrow \Delta$ (see, Disclaimer)

Problems and Future Works

- Problems to be solved
 - How can we support NS with mass 1.44 M_{sun} ? EOS around ρ_0 seems to be good.

→ Extra repulsion at high density is necessary.
 Vector meson mass reduction does not help.
 (Tsubakihara et al., AIP Conf. Proc. 1016 (2008), 156.)

- Spin-orbit interaction is too week in normal nuclei, too big in Λ hypernuclei.
 Scalar and vector potentials are smaller than other RMF models.
 → Explicit effect of π ?
 - (E.g. Ikeda, Sugimoto, Toki, 2004; Isshiki, AO, Naito, 2005)
- Log. type potential from SCL-LQCD (zero T treatment) may be too simple.
 - → Finite T (arcsinh), NLO- (Miura) or NNLO-SC-LQCD (T.Z. Nakano)

From QCD to Supernovae: Underway

