QCD phase diagram and dense matter EOS Akira Ohnishi (YITP, Kyoto Univ.)

- QCD phase diagram --- How can we observe it ?
- Phase diagram and in Strong coupling lattice QCD

Miura, Nakano, AO, Prog. Theor. Phys.,122(09),1045 [arXiv:0806.3357] Miura, Nakano, AO, Kawamoto, PRD80(09),074034 [arXiv:0907.4245] Nakano, Miura, AO, arXiv:0911.3453 [hep-lat]

EOS of dense hyperonic matter and its application to black hole formation

Ishizuka, AO, Tsubakihara, Sumiyoshi,Yamada, JPG35(08)085201. Sumiyoshi, Ishizuka, AO, Yamada, Suzuki, ApJ690(09)L43. Tsubakihara, Maekawa, Matsumiya, AO, arXiv:0909.5058.

Summary

QCD Phase diagram

Critical Point Search at RHIC

- Critical Point Search
 = One of the main goals in Low-E progs. at RHIC
- ✓s= 200 A GeV (RHIC top energy): Cross Over
 → √s = 5 A GeV (Injector (AGS) energy): Hadron phase
 We may observe "first order phase transition"
 and the QCD critical point in the range, √s= 5-200 A GeV

「相転移」をどうやって見つけるか?

■ 永宮 Method→ 様々な観測量の変化を同時測定

「ストレンジネスから新ハドロンへ」, RCNP, 12/11-12, 2009.

「相転移」をどうやって見つけるか?

- 永宮 Method→ 様々な観測量の変化を同時測定
- Critical Point (CP) or 1st order P.T.
 - Critical Point 近辺で期待されること
 - ◆ Fluctuation の増大, Non-Gaussian 揺らぎ (Stephanov, Rajagopal, Shuryak)
 - ◆ 軌道の focusing とそれにともなう粒子分布の変化 (Ejiri, Karsch, Laermann, Schmidt; Asakawa, Bass, Muller, Nonaka)
 - ◆ 音波の消失 → Mach Cone の消失 (Minami, Kunihiro)
 - Ist order phase transition での期待
 - ◆密度揺らぎをもつ相転移後の状態 からのハドロン化 (Mishustin; Randrup; Koch, Majumber, ...)

Neutron Stars

- 高密度物質はどのような状態か?
 - ◎ 核子の超流動状態 (³S₁, ³P₂)
 - π 凝縮、K 凝縮、QGP、カラー超伝導、Quarkyonic 物質、....

F. Weber, Prog. Part. Nucl. Phys. 54 (2005) 193

Core Collapse processes

- Numerical Simulation = v radiation hydrodynamics
 - Baryons, Electons, Photons (Hydro) + neutrinos (Boltzmann)
- Supernova
 - I-dim. (Spherical Sym.) → Exact v transport, Explosion fails Sumiyoshi, Yamada, Suzuki, Shen, Chiba, Toki, 2005
 - 2-dim. Hydrodynamics
 - → Some successful explosion results, but not yet conclusive Janka et al. (02); Kitaura et al. (06), 8(Marek, Janka (08)
 - Second Shock due to QCD p.t. ?
 (Hatsuda, 1987; Sagert et al., 2009)
- Black hole formation
 - Hot and dense matter is formed Sumiyoshi et al. (05), Sumiyoshi, Ishizuka,

AO, Yamada, Suzuki (09)ρ_B (f「ストレンジネスから新ハドロンへ」, RCNP, 12/11-12, 2009.

QCD Phase diagram

- Phase transition at high $T \rightarrow Lattice MC \& RHIC$
- High μ transition has rich physics
 → Various phases, CEP, Astrophysical applications, ...

QCD phase diagram is not only an academic subject, but also to be observed in near future !

Theoretical Approaches

- Sign problem
 - → Important sampling in Lattice MC does not work precisely.
- Models & Approximate Approaches
 - Lattice MC for small μ (Tayler, AC, DOS, Canonical, ...) → Consistent in small μ (μ/T < 1)
 - Monomer-Dimer-Polymer sim. in the Strong Coupling Limit Karsch, Mutter ('89), de Forcrand, Fromm ('09)

Eff. Models:

- NJL, PNJL (c.f. Sakai's talk) Nambu, Jona-Lasino ('61), Hatsuda, Kunihiro('94), Fukushima ('03)
- PLSM (Linear σ model with Pol.)
- Approximations:
 - Large Nc
 E.g. Hidaka, McLerran, Pisarski (08)

Strong Coupling Lattice QCD: Pure Gauge

- Quarks are confined in Strong Coupling QCD
 - Strong Coupling Limit (SCL)
 → Fill Wilson Loop with Min. # of Plaquettes
 - → Area Law (Wilson, 1974)

$$S_{\rm LQCD} = -\frac{1}{g^2} \sum_{\Box} \operatorname{tr} \left[U_{\Box} + U_{\Box}^{\dagger} \right]$$

Smooth Transition from SCL to pQCD in MC (Creutz, 1980) K. G. Wilson, PRD10(1974),2445 M. Creutz, PRD21(1980), 2308. G. Munster, 1981

N_t

NLO & NNLO SC-LQCD: Setups & Disclaimer

- We investigate the phase diagram and try to understand nuclear matter based on the strong-coupling lattice QCD (SC-LQCD).
 - Effective potential (free E. density) \rightarrow phase boundary & EOS
 - Setups & Disclaimer

Effective action in SCL (1/g⁰), NLO (1/g²), NNLO (1/g⁴) terms NLO: Faldt-Petersson ('86), Bilic-Karsch-Redlich ('92) Conversion radius > 6 in pure YM ? Osterwalder-Seiler ('78)

- One species of unrooted staggered fermion (N_f=4 in continuum limit) Moderate N_f deps. of phase boundary: BKR92, Nishida('04), D'Elia-Lombardo ('03)
- Leading order in 1/d expansion (d=3=space dim.)
 Min. # of quarks for a given plaquette configurations, no spatial B prop.
- Effective potential is obtained in mean field approximation
- Polyakov loop effects are not included (No Deconfinement).
- Different from "strong couling" in "large N."

Still far from "Realistic", but SC-LQCD would tell us useful qualitative features of the phase diagram and EOS.

Effective Potential in SC-LQCD with Fermions

- Lattice QCD partition function
 - \rightarrow Effective action of fermion and U₀ (U_i integral)
 - → Linearized eff. Action (Bosonization)
 - \rightarrow Eff. potential (fermion & U₀ integral)
- Lattice Action = fermion x link + plaq.

SCL (Kawamoto-Smit, '81) NLO (Faldt-Petersson, '86) NNLO (Nakano, Miura, AO, '09)

NNLO Effective Action

- Cumulants of two plaquettes
 - Correlation part of connected two plaquettes
 - Uncorr. & Normalization part are suppressed in 1/d power
 - Effective Action consists of $V^{-}V^{+}, W^{-}W^{+},$ MMMM, MMMMMM, $V^{-}V^{+}MM$
 - New type of Composite
 - next-to-nearest neighboring
 site coupling in τ direction

$$W_{x}^{+} = X_{x} U_{0,x} U_{0,x+\hat{0}} \overline{X}_{x+2\hat{0}}$$

Effective Potential and Phase Diagram

- Effective Potential in NLO/NNLO SC-LQCD
 - Suppression of const. quark mass → Smaller Tc
 - Vector potential from temporal plaq. \rightarrow Chem. Pot. is shifted
 - $\rightarrow \sigma \omega$ model of quarks with non-linear couplings !
- Phase diagram evolution with β $\rightarrow Miura's talk$
 - Shape of the phase diagram is compressed in T direction with β
 - Critical Point moves

 in lower μ direction in NNLO.
 EPisarski-Wilczek ''84), Ejiri, ('08),
 Aoki et al.(WHOT, '08), Allton et al., ('03, '05)

NLO/NNLO improves the shape of the phase diagram, but effects are not enough to explain the real world.

Cold Nuclear Matter on the Lattice

Baryon mass puzzle in SCL-LQCD: $N_c \mu_c < M_B$

→ QCD phase transition takes place before baryons appear. *Kluberg-Stern, Morel, Petersson ('83), Damgaard, Hochberg,Kawamoto ('85), Karsch, Mutter ('89), Barbour et al.('97), Bringoltz('07), Miura, Kawamoto, AO ('07)*

- Finite coupling effects: Decrease of quark mass.
 - \rightarrow Const. quark mass (~ E_q) becomes smaller than μ_c for $\beta > 5.5$ in NNLO SC-LQCD.

Cold Nuclear Matter on the Lattice

- Do we observe finite density matter before 1st order phase transition ? → Yes !
 - $E_q(\mu=0, T=0, \beta=6)=0.61$ $\mu_c^{(1st)}(T=0, \beta=6)=0.65$ \rightarrow "Nuclear matter" in 0.61< μ <0.65
- EOS of "Nuclear matter"
 - $a^{-1} \approx 500 \text{ MeV}$ Bilic, Demeterfi, Petersson ('92) \rightarrow Density in the order of ρ_0
 - No saturation
 - 1st order transition at $\rho_B \approx 0.4$ fm⁻¹.

EOS of Dense Hyperonic Matter and Its Applicatoin to Black Hole Formation

Neutron Stars

- RMF with Hyperons
 - Hyperon Potential: $U_{\Lambda} = -30$ MeV, $U_{\Sigma} = +30$ MeV, $U_{\Xi} = -15$ MeV
 - Neutron Star: (ρ_B, T, Y_e) ~ (5 ρ_0 , 0 MeV, 0.2) \rightarrow Hyperon fraction ~ 50 %
 - Reduction of max. mass of NS
 - Repulsive Σ pot. $\rightarrow \Xi$ will be the next hyperon to Λ !

Black Hole Formation (Failed Supernova)

High T during BH formation

 \rightarrow Abundant hyperons \rightarrow Soft EOS \rightarrow Earlier Collapse to BH

Short v emission may be the signal of Hyperon Admixture at high density and/or temperature

Chiral SU(3) RMF with a Logarithmic σ potential

Nuclear matter EOS is important in

Nuclear B.E., HIC, Neutron Stars, Supernova, BH formation,

 — Chiral symmetry may be as important as flavor SU(3) sym.

Summary

- **QCD** phase diagram at finite μ or ρ_B may be probed in near future experiments (RHIC/FAIR) and observations (v/GW), in addition to the current study in the $\mu=0$ region.
- Due to the sign problem, approximate/effective model studies are needed to understand finite density matter.
- We have derived the effective potential with NLO (1/g²) and NNLO(1/g⁴) effects in strong coupling lattice QCD.
 - finite coupling \rightarrow smaller quark mass, repulsive vector pot.
 - Phase diagram shape is improved, while the effects are not enough.
 - Baryon mass puzzle is solved (at least weakened) with finite coupling.

Nuclear matter on the lattice may not be too far (?)

「ストレンジネスから新ハドロンへ」, RCNP, 12/11-12, 2009.

Thank you !

- Collaborators
 - Strong coupling lattice QCD: K. Miura (YITP), T.Z. Nakano (Kyoto U.), N.Kawamoto (Hokkaido U.)
 - Hyperonic EOS for Supernovae: K. Sumiyoshi (Numazu), K. Tsubakihara (Hokkaido), C. Ishizuka (Keele), S. Yamada (Waseda), H. Suzuki (Tokyo Sci. U.)
 - Chiral RMF / Hyperon production reactions: K. Tsubakihara, H. Maekawa, H. Matsumiya (Hokkaido), P.K. Sahu (India)

Not mentioned....

- Ξ and Λ hypernuclei in AMD: M. Isaka, H. Matsumiya, M. Kimura (Hokkaido), A. Dote (KEK)
- pions in neutron star: D. Jido (YITP), T. Sekihara (Kyoto U.), K. Tsubakihara (Hokkaido)
- Heavy-Ion Collisions: Isse, Nara, Hirano, Kunihiro, Schafer, Muller

