# <u> 強結合格子 QCD から物質の相図と状態方程式へ</u> ---- 現状と展望 ----

- Akira Ohnishi (YITP, Kyoto Univ.) in collaboration with K. Miura (Frascati), T.Z.Nakano (YITP & Kyoto U.)
  - Introduction
  - Finite Coupling Effects in Strong Coupling Lattice QCD
  - Polyakov Loop Effects
  - Conclusion

Miura,Nakano,AO,Kawamoto, PRD80('09),074034. Nakano, Miura, AO, PTP123('10)825. Nakano, Miura, AO, arXiv:1009.1518 Nakano, Miura, AO; Miura, Nakano, AO, Kawamoto (LAT10)



Ohnishi @ Tohoku U. Seminar, Dec.21, 2010

ORETICAL PHYSICS

**QCD** Phase diagram

- Phase transition at high T → Lattice MC, RHIC, LHC
- High μ transition has rich physics
  - → Various phases, CEP, Astrophysical applications, ... but Lattice MC has sign problem at finite density.





Ohnishi @ Tohoku U. Seminar, Dec.21, 2010

### **Experimental & Observational Approaches**

- FAIR / Low E prog. of RHIC aim at searching for baryon rich QGP and Critical End Point.
- Neutron Star observation of radius & mass (simultaneously) reveals EOS of dense matter.





Ozel, Baym & Guver, arXiv: 1002.3153 [astro-ph.HE]

#### RHIC

# How can we attack QCD phase diagram ?

- Lattice QCD Monte-Carlo simulation with some prescriptions
  - Taylor expansion, Analytic cont., Reweighting methodd, Canonical ensemble, ...
    - → 符号問題を避ける様々な 方法が提案されている。 but 異なるグループで異なる結果
- Effective models of QCD
  - Nambu-Jona-Lasinio (NJL), Polyakov NJL (PNJL), Random matrix, ....
    - → MC-LQCD で計算可能な領域や 実験データを再現し、信頼性を 高めた有効模型 but まだ大きな模型依存性



Z.Fodor, S.D.Katz, JHEP 0203, 014



K.Fukushima, PRD77('08)114028.



Another Approach: Strong Coupling Lattice QCD

- 強結合領域ではグルーオンの伝播項は小さい
  - → Plaquette (グルーオンループ)の少ない配位が支配的
  - → 1/g2 の次数を決めて、グルーオンの積分を解析的に実行
- Pure Yang-Mills / 強結合極限での大きな成功
  - クォークの閉じ込め
  - カイラル対称性の破れと回復
  - MC 計算による相図



Damgaard,Kawamoto,Shigemoto ('84) de Forcrand, Fromm ('10) 0



Ohnishi @ Tohoku U. Seminar, Dec.21, 2010

 $\beta = 2N_0/g^2 (N_c = 2)$ 

SC-LQCD

MC

Wilson('74), Munster ('81)

Towards the phase diagram in the real world

- Fermion を含む場合、強結合極限 (Strong coupling limit; SCL) では 大きな成功を収めたが ...
  - 強結合極限 (g → ∞)
  - Staggered fermion (連続領域で $N_f \rightarrow 4$ )
  - ◎ 解析的な計算では Large d 近似 (1/d 展開の LO) + 平均場近似
  - Polyakov loop (非閉じ込め相転移の秩序変数)を含まない
     → 非閉じ込め相転移が記述できない
  - バリオン質量問題 ( $N_{e}\mu_{e} < M_{N}$ ; 核物質ができる前に相転移)

#### ■ 有限結合効果・ポリアコフループ効果を含む強結合格子 QCD

NLO (1/g<sup>2</sup>): Miura,Nakano,AO,Kawamoto, PRD80('09),074034. NNLO (1/g<sup>4</sup>): Nakano, Miura, AO, PTP123('10)825. Polyakov loop: Nakano, Miura, AO, arXiv:1009.1518 Miura, Nakano, AO, Kawamoto (LAT10) → 現実のQCD 相図の理解に向けた研究の進展



SC-LQCD: Setups & Disclaimer

- Setups & Disclaimer
  - Effective action in SCL (1/g<sup>0</sup>), NLO (1/g<sup>2</sup>), NNLO (1/g<sup>4</sup>) terms and Polyakov loop.

NLO: Faldt-Petersson ('86), Bilic-Karsch-Redlich ('92) Conversion radius > 6 in pure YM ? Osterwalder-Seiler ('78)

• One species of unrooted staggered fermion ( $N_f = 4$  @ cont.)

Moderate N<sub>f</sub> deps. of phase boundary: BKR92, Nishida('04), D'Elia-Lombardo ('03)

- Leading order in 1/d expansion (d=3=space dim.)
  - → Min. # of quarks for a given plaquette configurations, no spatial B prop.
- Effective potential is obtained in mean field approximation
- Different from "strong couling" in "large N<sup>\*</sup>

Still far from "Realistic", but SC-LQCD would tell us useful qualitative features of the phase diagram and EOS.



*Effective Potential in NLO and NNLO Strong-Coupling Lattice QCD* 



# **Strong Coupling Lattice QCD**

Lattice QCD action

**Mesonic composites** 

$$M_{x} = \overline{X}_{x} X_{x}, \quad V_{x}^{+} = e^{\mu} \overline{X}_{x} U_{0,x} X_{x+\hat{0}}, \quad V_{x}^{-} = e^{-\mu} \overline{X}_{x+\hat{0}} U_{0,x}^{+} X_{x}$$

■ Effective Action & Effective Potential (free energy density)  $Z = \int D[X, \overline{X}, U_{0}, U_{j}] \exp(-S_{LQCD})$   $= \int D[X, \overline{X}, U_{0}] \exp(-S_{SCL}) \langle \exp(-S_{G}) \rangle \qquad (U_{j} \text{ integral})$   $\approx \int D[X, \overline{X}, U_{0}] \exp(-S_{eff}[X, \overline{X}, U_{0}, \Phi_{stat.}]) \qquad (bosonization)$   $\approx \exp(-VF_{eff}(\Phi; T, \mu)/T) \qquad (fermion + U_{0} \text{ integral})$ 



# Finite Coupling Effects

Effective Action with finite coupling corrections Integral of  $exp(-S_G)$  over spatial links with  $exp(-S_F)$  weight  $\rightarrow S_{eff}$ 

$$S_{\text{eff}} = S_{\text{SCL}} - \log \langle \exp(-S_G) \rangle = S_{\text{SCL}} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_c$$

 $<S_{G}^{n}>_{c}=$ Cumulant (connected diagram contr.) *c.f. R.Kubo('62)* 



$$S_{\text{eff}} = \frac{1}{2} \sum_{x} (V_{x}^{+} - V_{x}^{-}) - \frac{b_{\sigma}}{2d} \sum_{x,j>0} [MM]_{j,x} \qquad SCL \ (Kawamoto-Smit, \ '81)$$

$$+ \frac{1}{2} \frac{\beta_{\tau}}{2d} \sum_{x,j>0} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} - \frac{1}{2} \frac{\beta_{s}}{d(d-1)} \sum_{x,j>0,k>0,k\neq j} [MMMM]_{jk,x} \qquad NLO \ (Faldt-Petersson, \ '86)$$

$$- \frac{\beta_{\tau\tau}}{2d} \sum_{x,j>0} [W^{+}W^{-} + W^{-}W^{+}]_{j,x} - \frac{\beta_{ss}}{4d(d-1)(d-2)} \sum_{\substack{x,j>0,|k|>0,|l|>0\\|k|\neq j,|l|\neq |k|}} [MMMM]_{jk,x} [MM]_{j,x+\hat{l}}$$

$$+ \frac{\beta_{\tau s}}{8d(d-1)} \sum_{x,j>0,|k|\neq j} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} \left( [MM]_{j,x+\hat{k}} + [MM]_{j,x+\hat{k}+\hat{0}} \right) \qquad NNLO \ (Nakano, Miura, AO, \ '09]$$



### Finite Coupling Effects (cont.)

- 拡張された Hubbard-Stratonovich (EHS) 変換
  - 異なる Composite の積の分解が可能

*Miura, Nakano, AO (09), Miura, Nakano, AO, Kawamoto (09)*  $\exp(\alpha A B)$   $= \int d\varphi d\varphi \exp[-\alpha(\varphi^2 - (A+B)\varphi + \varphi^2 - i(A-B)\varphi)]$ 

 $\approx \exp\left[-\alpha (\bar{\psi}\psi - A\psi - \bar{\psi}B)\right]_{\text{stationary}}$ 

- 有限結合定数効果
  - ・ 波動関数繰り込み定数の変化(時間方向の hopping が変化)
  - 有効クォーク質量の変化 (4 Fermi + 8 Fermi + 12 Fermi)
  - 有効化学ポテンシャルの変化(ベクトル的な平均場)





# Effective Potential in SC-LQCD with Finite Couplings

Effective Potential in NLO/NNLO SC-LQCD

Miura,Nakano,AO,Kawamoto,PRD80('09),074034;Nakano,Miura,AO,PTP123('10)825.

$$\begin{split} F_{\text{eff}} &= F_{\text{eff}}^{(X)}(\sigma, \omega_{\tau}) + V_{q}(\tilde{m}_{q}; \tilde{\mu}, T) - N_{c} \log Z_{\chi} \\ \sigma \approx \langle M \rangle \text{ (chiral condensate), } \omega_{\tau} \approx -\partial F_{\text{eff}} / \partial \mu = \rho_{q} \text{ (quark number density)} \\ \tilde{m}_{q} &= \frac{\tilde{b}_{\sigma} \sigma + m_{0}}{Z_{\chi}(1 + 4\beta_{\tau\tau} \varphi_{\tau})} \approx \frac{d}{2N_{c}} \sigma \times \left(1 + \beta_{\sigma\sigma}^{(m)} \sigma^{2} - \beta_{\sigma\omega}^{(m)} \sigma^{2} \omega_{\tau}^{2} + ...\right) \\ \delta \mu &= \mu - \tilde{\mu} = \log(Z_{+} / Z_{-}) \approx \beta_{\tau} \omega_{\tau} \times \left(1 + \beta_{\omega\sigma}^{(\mu)} \sigma^{2} + ...\right) \\ V_{q}(m, \mu, T) &= -\frac{T}{L^{d}} \log \left\{ \int D[U_{0}] det(G^{-1}) \right\} \\ &= -T \log \left[ \frac{\sinh\left((N_{c} + 1) E_{q}(m) / T\right)}{\sinh\left(E_{q}(m) / T\right)} + 2\cosh(N_{c} \mu / T) \right] \\ E_{q}(m) &= \arcsin m \quad (\text{quark excitation energy}) \end{split}$$





# **Phase Diagram Evolution**

Shape of the phase diagram is compressed in T direction with β

 $\rightarrow$  *Improvements in R*= $\mu_c/T_c$  !

- MC (R > 1) → SCL (R = (0.3-0.45))
   → NLO/NNLO (R ~ 1)
   → Real World (R~(2-4))
- Critical Point
  - NLO: μ(CP) ~ Const.

  - $\mu(CP)/T(CP) \sim 1 \leftrightarrow MC \ (\mu/T > 1)$  *Ejiri, ('08), Aoki et al.(WHOT,'08), Allton et al., ('03,'05)*





# **Critical Temperature and Chemical Potential**

- **a** Critical Temperature ( $\mu = 0$ )  $\rightarrow$  rapid decrease with  $\beta = 2N_c/g^2$ 
  - W.F. Renom. factor  $Z_{\chi} \rightarrow$  suppression of mass
  - T<sub>c</sub> is still larger than MC results de Forcrand ('06), Gottlieb et al. ('87), Gavai et al. ('90), de Forcrand, Fromm ('09)
- Critical Chem. Pot. (T=0) → weak deps. on β
  - Suppression of mass ~ Suppression of μ
  - Consistent with previous results *Bilic-Demeterfi-Petersson*, '92
- NNLO effects are small on T<sub>c</sub>(μ =0) and μ<sub>c</sub>(T=0).





### まだ何かが足りない.....



# **Polyakov Loop Effects in SC-LQCD**



# Polyakov loop effects in SC-LQCD

Polyakov Loop

$$P = \frac{1}{N_c} \operatorname{tr} L, \quad L = T \exp\left[-i \int_0^\beta dx_4 A_4\right] = T \prod_{\tau=1}^{N_\tau} U_0(\tau, \mathbf{x})$$

Order parameter of the deconfinement transition in the heavy quark mass limit.

A.M. Polyakov, PLB72('78),477; L. Susskind, PRD20('79)2610; B. Svetitsky, Phys.Rept.132('86),1.

Interplay between PL and χ cond. is known to be important in effective models

A. Gocksch, M. Ogilvie, PRD31(85)877; K. Fukushima, PLB591('04),277.

**Polyakov loop will definitely affect QCD phase transition.**  $\rightarrow$  Let's evaluate its effects in SC-LQCD



### Effective action with Polyakov loop

Polyakov Loop action in the leading order of 1/g<sup>2</sup>

× 77

After integrating out plaquette action over spatial links, we get

$$\Delta S_p = -\left(\frac{1}{g^2 N_c}\right)^{N_\tau} N_c^2 \sum_{x, j>0} \left[\overline{P}_x P_{x+\hat{j}} + \text{h.c.}\right] \quad (\text{LO in SC expansion})$$



• Polyakov loop coupling with fermion  $Z \sim \prod_{x} \int dL(x) e^{-\Delta S_{p}} \det_{c} \left[ 1 + L e^{-(E_{q} - \tilde{\mu})/T} \right] \left[ 1 + L^{+} e^{-(E_{q} + \tilde{\mu})/T} \right]$   $= \prod_{x} \int dP d \bar{P} H(P, \bar{P}) e^{-\Delta S_{p}} \left[ 1 + N_{c} P e^{-(E_{q} - \tilde{\mu})/T} + N_{c} \bar{P} e^{-2(E_{q} - \tilde{\mu})/T} + e^{-3(E_{q} - \tilde{\mu})/T} \right]$   $\times \left[ 1 + N_{c} \bar{P} e^{-(E_{q} + \tilde{\mu})/T} + N_{c} P e^{-2(E_{q} + \tilde{\mu})/T} + e^{-3(E_{q} + \tilde{\mu})/T} \right]$ 

Finite Polyakov loop l enables one- and two-quark excitation



### Effective potential with Polyakov loop

#### Haar measure method

Replace the Polyakov loop P with its representative value l, and Haar measure is included in the potential.

$$\begin{split} \mathcal{F}_{\mathbf{q}} &= -N_{c}E - T\log\left[1 + N_{c}\ell e^{-(E-\tilde{\mu})/T} + N_{c}\bar{\ell}e^{-2(E-\tilde{\mu})/T} + e^{-3(E-\tilde{\mu})/T}\right] \\ &- T\log\left[1 + N_{c}\bar{\ell}e^{-(E+\tilde{\mu})/T} + N_{c}\ell e^{-2(E+\tilde{\mu})/T} + e^{-3(E+\tilde{\mu})/T}\right] - N_{c}\log Z_{\chi} ,\\ U_{g} &= -2T\beta_{p}\bar{\ell}\ell - T\log\left[1 - 6\ell\bar{\ell} + 4\left(\ell^{3} + \bar{\ell}^{3}\right) - 3\left(\ell\bar{\ell}\right)^{2}\right] ,\end{split}$$

E. M. Ilgenfritz, J. Kripfganz, ZPC29('85)79; A. Gocksch, M. Ogilvie, PRD31('85)877; K. Fukushima, PLB 553, 38 (2003); PRD 68('03)045004;K. Fukushima, PLB591('04)277.

#### Bosonization method

• Introduce the auxiliary field  $l = \langle P \rangle$ , and integrate out  $U_0 = L$ .

$$\Delta S_p \approx \left(\frac{1}{g^2 N_c}\right)^{N_\tau} N_c^2 \sum_{\mathbf{x}, j>0} 2\left(\bar{\ell}\ell - \bar{P}_{\mathbf{x}}\ell - \bar{\ell}P_{\mathbf{x}}\right) \simeq 2\beta_p L^d \bar{\ell}\ell - 2\beta_p \sum_{\mathbf{x}} \left(\bar{P}_{\mathbf{x}}\ell + \bar{\ell}P_{\mathbf{x}}\right)$$

#### $\rightarrow$ Weise mean field approximation

c.f. J. B. Kogut, M. Snow and M. Stone, NPB 200('82)211 (no quarks)



# Polyakov loop potential

- Deconf. phase transition *l* = 0 at low T → *l* ~ 1 at high T is mainly governed by U<sub>g</sub>
- Integral over U<sub>0</sub>
   in Bosonization method
  - Fluctuation of PL
     → smooth potential
  - No singularity at *l* = 1
  - Correlation of *l* and *l*<sup>bar</sup>

$$\langle l_p \overline{l}_p \rangle = 1$$
 even at  $l = \overline{l} = 0$ 

 $\rightarrow$  meson excitation is favored





### Chiral condensate and Polyakov loop

- Chiral and Deconf. transition correlate !
- SC-LQCD w/o PL: quarks are confined.
   → PL promote quarks to deconfine ! (cf. Quarks are *not* confined in NJL → PL *confines* quarks in PNJL.)
- Tc is suppressed with PL



Order Parameters

Chiral Condensate



Polyakov Loop

Ohnishi @ Tohoku U. Seminar, Dec.21, 2010

# *Critical Temperature at* $\mu=0$

- SC-LQCD w PL seems to be qualitatively promising. Is it *quantitatively* good ?
  - Improved from SC-LQCD w/o Polyakov loop.
  - Polyakov loop suppresses T<sub>c</sub>.
     (cf. PNJL)
  - Quantitately, not bad for β < 4 in T<sub>c</sub> (β<sub>c</sub>)
  - In the "scaling" region (β>5), we do not see further bending of T<sub>c</sub> in SC-LQCD.



Nakano, Miura, AO, LAT10 & in prep. MC Results: Ph. de Forcrand, M. Fromm ('09), Ph. de Forcrand, private comm., S.A.Gottlieb et al. ('87), D'Elia, Lombardo ('03), Z.Fodor, S. D. Katz ('02), R.V.Gavaiet al. ('90)



### Quarkyonic matter

McLerran, Pisarski ('07), Hidaka, McLerran, Pisarski ('08), Kojo, Hidaka, McLerran, Pisarski ('10), Glozman et al('08), Fukushima ('08), Abuki, .., Ruggieri ('08), McLerran, Redlich, Sasaki ('09), Miųra, Nakano, AO('09),

#### Quarkyonic matter

 T<sub>d</sub> is governed by gluons at large N<sub>c</sub>, while high density matter is realized at μ~m<sub>q</sub> → deviation of deconf. and chiral transitions



 SC-LQCD with PL (Haar measure method) shows large region of "quarkyonic" matter







### **Comparison with Other Models**



#### Fukushima, Hatsuda ('10)



#### Abuki et al. (08)



Fukushima (08)

Deconfinement Crossover

s- Chiral Crossover





Miura, Nakano, AO, LAT10, in prep.

McLerran, Pisarski, Sasaki ('09)



# **Summary**

- Strong coupling lattice QCD (SC-LQCD) has been developed to describe the QCD phase diagram at finite T and μ.
  - Approximations: double expansion (1/g<sup>2</sup>, 1/d) and mean field.
  - Recent development: NLO and NNLO in 1/g<sup>2</sup>, Polyakov loop effects cf. Jolicoeur, Kluberg-Stern, Morel, Lev, Petersson ('84)
     → NNLO at T=0 treatment (no phase diagram study)
     Gocksch-Ogilvie model
     → SCL-LQCD + phen. string tension
- SC-LQCD may serve a qualitatively competitive framework to effective models such as PNJL in some aspects of the QCD phase diagram.
  - NNLO w/ PL (bosonization method) roughly (i.e. 10-20 % precision) explains T<sub>c</sub> in MC simulations for β < 4.</li>
  - NLO w/ PL (Haar measure method) predicts the existence of the quarkyonic matter.



# **Future directions**

- Further studies are necessary to give nuclear matter saturation.
  - NNLO SC-LQCD solves the "Baryon Mass Puzzle"  $(\mu_c > M_B/3 @ SCL)$ , but nuclear matter does not saturate.
  - Auxiliary field fluctuations and 1/d higher order terms are the plausible origin of saturation.
    - $\rightarrow$  Nakano's next work ?
  - Combination with MC simulation may be an interesting direction to pursue.
- Problems....
  - With Polyakov loop, rigorous 1/g<sup>2</sup> expansion is broken. How can we justify it ?
  - Transition at μ=0 in the chiral limit is still 2nd order. How can we include the effects of anomaly ?
  - There is still an unsolved homework in the strong coupling limit. Any idea ?



### Thank you for your attention !



## Constituent Quark Mass in NNLO SC-LQCD

- Mechanism of "stable" μ<sub>c</sub>(T=0) in NLO/NNLO SC-LQCD
  - = Effects of quark mass reduction & repulsive vector pot. cancel

Transition Condition at  $T = 0: E_q(\tilde{m}_q) = \tilde{\mu} \simeq \mu - \beta'_\tau \omega_\tau$  $\rightarrow \mu \simeq E_q(\tilde{m}_q) + \beta'_\tau \omega_\tau$ 

**Pocket formula**  $\mu_{c,T=0} \simeq \frac{1}{2} \left[ E_q(\sigma = \sigma_{\text{vac}}, \omega_{\tau} = 0) + \delta \mu(\sigma = 0, \omega = N_c) \right]$ 



Quark mass ( $\approx E_q$ ) is smaller than  $\mu_c$  for  $\beta > 5.5$ .  $\rightarrow$  "Baryon mass puzzle" may be solved !



### Nuclear Matter on the Lattice at Strong Coupling

- Do we observe finite density matter before 1st order phase transition ? → Yes !
  - $E_q(\mu=0, T=0, \beta=6)=0.61$   $\mu_c^{(1st)}(T=0, \beta=6)=0.65$  $\rightarrow$  "Nuclear matter" in 0.61< $\mu$ <0.65
- EOS of "Nuclear matter"
  - $a^{-1} = 500 \text{ MeV}$ 
    - Bilic, Demeterfi, Petersson ('92)  $\rightarrow$  Density in the order of  $\rho_0$
  - No saturation
  - 1st order transition at  $\rho_{\rm B}$ =0.4 fm<sup>-1</sup>.



