Probing the QCD Critical Point in Core Collapsing Compact Stars

Akira Ohnishi (YITP)

in collaboration with H. Ueda, T.Z.Nakano (Kyoto U.), M. Ruggieri (YITP → Catania), K. Sumiyoshi (Numazu CT)

7th Int. workshop on "Critical Point and Onset of Deconfinement" CCNU, Wuhan, China, Nov.7-11, 2011

- Introduction
- QCD phase diagram in asymmetric nuclear matter
- Critical Point sweep during black hole formation
- Summary

AO, *H. Ueda*, *T.Z.Nakano*, *M. Ruggieri*, *K. Sumiyoshi*, *PLB* 704 ('11)284 [arXiv:1102.3753].

QCD Phase Diagram

Ohnishi @ ISMD 2011, Sep.26-30, 2011, Miyajima, Japan

2 / 28

Critical Point Search

Physics of QCD phase diagram connects the birth of our universe and the final form of materials, and is probed in laboratory.

Critical Point is a Corner Stone of the phase diagram, and is accessible if μ_{CP} < 500 MeV.</p>

Ohnishi @ ISMD 2011, Sep.26-30, 2011, Miyajima, Japan

Quark Matter in Compact Stars

Neutron Star

E.g. N. Glendenning, "Compact Stars"; F. Weber, Prog.Part.Nucl.Phys.54('05)193

- Cold (T~0), Dense ($\rho_B \sim 5 \rho_0$), Highly Asymmetric ($Y_p \sim (0.1-0.2)$)
- Supernovae T. Hatsuda, MPLA2('87)805; I. Sagert et al., PRL102 ('09) 081101.
 - Warm (T~20 MeV), Dense (ρ_{B} ~1.8 ρ_{0}), mildly asym. (Y_{p} ~ (0.3-0.4))
- Neutron star merger
 - Very dense, warm (T~(10-20) MeV)
- Dynamical black hole formation

K. Sumiyoshi, et al., PRL97('06) 091101; K.Sumiyoshi, C.Ishizuka, AO, S.Yamada, H.Suzuki, ApJL690('09),L43

• Hot (T~(70-90)MeV), Dense($\rho_{\rm B}$ ~(4-5) $\rho_{\rm 0}$), and Asymmetric (Y_p ~ (0.1-0.3))

Gravitational Collapse of Heavy Star

Ohnishi @ ISMD 2011, Sep.26-30, 2011, Miyajima, Japan

5

Dynamical Black Hole Formation

- Gravitational collapse of heavy (e.g. 40 M_o) progenitor would lead to **BH** formation.
 - Shock stalls, and heating by v is not enough to take over strong accretion. \rightarrow failed supernova
 - v emission time ~ (1-2) sec w/o exotic matter.
 - emission time is shortened by exotic dof (quarks. hyperons. pions).

Thermal Condition during BH formation

Quark-hadron and nuclear physicists are interested in (T, μ) !

- Maximum T ~ 90 MeV (off-center) (Heated by shock propagation)
- Maximum μ_B ~ 1300 MeV (center)
- Maximum $\delta \mu = (\mu_n \mu_p)/2 \sim 130$ MeV (center)

Nucleon+leptons+photon (Shen EOS), 40 Msun AO, Ueda, Nakano, Ruggieri, Sumiyoshi, PLB704('11),284

Ohnishi @ ISMD 2011, Sep.26-30, 2011, Miyajima, Japan

7 / 28

QCD phase diagram in Compact Astrophys. Phen.

- Phase diagram probed in High-Energy Heavy-Ion Collisions
 - Hot & Dense Symmetric matter
- Phase diagram probed in Compact Astrophysical Phenomena

Model Details

BH formation calculation

Sumiyoshi, Yamada, Suzuki, Chiba, PRL 97('06)091101.

- v radiation 1D (spherical) Hydrodynamics
- v transport is calculated exactly by solving the Boltzmann eq.
- \blacklozenge Gravitational collapse of 40 M_{\odot} star
- Initial condition: WW95 S.E.Woosley, T.A.Weaver, ApJS 101 ('95) 181
- Shen EOS (npeµ)
- QCD effective models
 - NJL, PNJL, PNJL with 8 quark int., PQM
 - N_f=2
 - Vector coupling $\rightarrow G_v/G_s$ (g_v/g_s in PQM)=0, 0.2

Chiral Effective Models

- Approaches to Phase Diagram
 - Lattice QCD: Reliable at small μ (μ << T), but has the sign problem at large μ
 - Chiral Effective models: NJL, PNJL, PQM Nambu, Jona-Lasinio ('61), Fukushima('03), Ratti, Thaler, Weise ('06), B.J.Schafer, Pawlowski, Wambach ('07); Skokov, Friman, E.Nakano, Redlich('10)

Spontaneous breaking & restoration of chiral symmetry Polyakov loop extension \rightarrow Deconf. transitions

Chiral Effective Models ($N_f=2$)

Lagrangian (PQM, as an example)

 $L = \overline{q} \Big[i \gamma^{\mu} \underline{D}_{\mu} - g_{\sigma} (\sigma + i \gamma_{5} \tau \cdot \pi) \Big] q + \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma + \frac{1}{2} \partial^{\mu} \pi \cdot \partial_{\mu} \pi$ q-Pol. quark-meson $-U_{\sigma} (\sigma, \pi) - U_{\Phi} (\Phi, \overline{\Phi})$ chiral Polyakov $F_{\text{eff}} \equiv \Omega / V = U_{\sigma} (\sigma, \pi = 0) + U_{\Phi} (\Phi, \overline{\Phi}) + \frac{F_{\text{therm}}}{V_{\text{therm}}} + \frac{U_{\text{vac}} (\sigma, \Phi, \overline{\Phi})}{Q_{\text{there}}}$ particle exc. q zero point

- Polyakov loop effective potential from Haar measure U₀ ~ -log (Haar Measure) (Fit lattice data to fix parameters).
- Vector coupling is not known well → Comparison of g_v/g_s=0, 0.2
 L_v=-g_v q̄ γ_µ(ω^µ+τ·R^µ)q-1/4 ω_{µv}ω^{µv}-1/4 R_{µv}·R^{µv}+1/2 m²_ωω_µω^µ+1/2 m²_ρ R_µ R^µ
 8 Fermi interaction

T. Sasaki, Y. Sakai, H. Kouno, M. Yahiro ('10)

$$G_{\sigma 8}\left[(\bar{q}q)^2 + (\bar{q}i\gamma_5\tau q)^2\right]^2$$

Isospin chemical potential

- Isospin chemical potential $\delta\mu$ $\delta\mu = (\mu_d \mu_u)/2 = (\mu_n \mu_p)/2 \rightarrow \mu_d = \mu_q + \delta\mu, \ \mu_u = \mu_q \delta\mu$
 - Finite $\delta \mu \rightarrow$ (Isospin) Asymmetric matter $N_u \neq N_d$
 - \rightarrow Smaller "Effective" number of flavors
 - \rightarrow Weaker phase transition \rightarrow smaller T_{CP}

Critical Point sweep during black hole formation

How is quark matter formed during BH formation ?

- Highest μ_B just before horizon formation ~ 1300 MeV
 > QCD transition μ (1000-1100 MeV)
 → Quark matter is formed before BH formation
- Core evolves below CP, Off-center goes above CP → CP sweep

How is quark matter formed during BH formation ?

Model dependence to form quark matter \rightarrow Three ways

Ohnishi, CPOD, Nov. 7-11, 2011, Wuhan, China 16

Swept Region of Phase Diagram during BH formation

- CP location in Symmetric Matter
 - Lattice QCD μ_{CP}=(400-900) MeV
 - Effecitve models
 μ_{CP}=(700-1050) MeV
- CP in Asymmetric Matter (E.g. δμ=50 MeV)
 - T_{CP} decreases at finite $\delta\mu$.
 - \rightarrow Accessible (T, μ_B) region during BH formation

M.A.Stephanov, Prog.Theor.Phys.Suppl.153 ('04)139; FK02:Z. Fodor, S.D.Katz, JHEP 0203 (2002) 014 LTE:S. Ejiri et al., Prog.Theor.Phys.Suppl. 153 (2004) 118; Can: S. Ejiri, PRD78 (2008) 074507 Stat.:A. Andronic et al., NPA 772('06)167

How about Neutron Stars ?

- Contraction of Proto-Neutron Star
 - (T, μ_B) are not enough at 1 sec after bounce of 15 M_{\odot} star collapse
 - Larger (T, μ_B) is expected in long time evolution (~20 sec) or heavier proto-neutron stars. *K. Sumiyoshi et al. ApJ* 629 ('05) 922;

J. A. Pons et al., ApJ 513 ('99)780; J. A. Pons et al., ApJ 553 ('01) 382.

- Cold Neutron Star
 - max. δ μ~ 100 MeV
 - Possibility of cross over in NS

Discussion

- How can we observe the phase transition signal ?
 - v spectrum ? Gravitational waves ? Supernova: Second peak in v & v emission *Hatsuda('87), Sagert et al.('09)*
- How frequent do dynamical BH formation take place ?
 - Less frequent than SN (< 20 M_{\odot}), but should be in collapse of heavy stars (>40 M_{\odot}).

C.L.Fryer, ApJ 522('99)413; E.O'Connor, C.D.Ott, ApJ 730('11)70

- Strangeness may reduce δμ in hadronic / quark matter
 - No s-wave π cond. in NS
 AO, D. Jido, T. Sekihara,
 K. Tsubakihara, PRC80('09)038202.
- Hadron-Quark EOS is necessary

E.g. Steinheimer, Schramm, Stocker('11)

Summary and Discussion

- Critical Point temperature is expected to be reduced in asymmetric nuclear matter.
- Black hole formation processes produce hot (~90 MeV) and dense (μ_B ~ 1300 MeV) matter, and we expect the formation of baryon rich quark matter.
- Since the temperature and asymmetry (δμ~130 MeV) are high, we have a possibility that CP is swept during BH formation.
- Construction of Hadron-Quark matter EOS with CP and its application to BH formation are desired. (c.f. J. Steinheimer; D. Blaschke)

Thank you for your attention !

Collaborators

- T.Z.Nakano (Kyoto U./YITP),
- H. Ueda (Kyoto U.), M. Ruggieri (YITP)
- K. Sumiyoshi (Numazu), K. Tsubakihara (Hokkaido U.),
- C. Ishizuka (Tokyo U. of Sci.),
- S. Yamada (Waseda), H. Suzuki (Tokyo U. Sci.),

Questions and Conclusion

- **Does Quarkyonic matter exist in QCD with** N = 3?
 - \rightarrow There is χ restored & Polyakov loop suppressed region at low T and large µ in Strong Coupling Lattice QCD
- Is there any site where Quarkyonic matter is formed ?
 - \rightarrow During the dynamical black hole formation, CP may be swept and quarkyonic matter may be formed.

Quarkyonic matter

- **Do** χ and Z_{Nc} transitions deviate at large μ ?
 - Large Nc: Yes

L. McLerran, R. D. Pisarski, NPA796 ('07)83

Effective Models: Yes and No

- Yes, in PNJL with some parameter set L.McLerran, K.Redlich, C.Sasaki,NPA824('09) 86; H. Abuki et al.('08); Y.Sakai et al.,('10); D. Blaschke et al.('11)
- No, with FRG or phen. inputs

 T. K. Herbst, J. M. Pawlowski, B. J. Schaefer,
 PLB 696 ('11)58 (PQM-FRG), K.Fukushima,
 PLB 695('11)387 (PNJL+Stat.)
- QCD with Nc=3: Difficult
 - AC, Taylor expansion, $\dots \rightarrow \mu/T < 1$
 - QCD-FRG: Not yet
 - SC-LQCD: This work

McLerran, Redlich, Sasaki ('09)

Strong Coupling Lattice QCD

- SC-LQCD has been a successful tool from the beginning of the lattice QCD formulation !
 - Pure Yang-Mills theory → Confinement

Area Law (Wilson ('74)), S.C. Expansion (Munster ('81)),, Finite T Pol. loop eff. action (Langelage, Münster, Philipsen ('08)), ..

■ With fermion → *SSB and restoration of Chiral Symmetry*

SSB [Kawamoto, Smit ('81)] meson mass [Kluberg-Stern, Morel, Petersson ('83)], Chiral restoration [Damgaard, Kawamoto, Shigemoto('84)], phase diagram [Bilic, Karsch, Redlich ('92), Fukushima ('04), Kawamoto, Miura, AO, Ohnuma ('07), de Forcrand, Fromm ('10)], Finite coupling [Miura, Nakano, AO, Kawamoto ('09-'11)]

■ Combination → *Chiral and Polyakov loop dynamics*

Chiral Polyakov Dynamics [Ilgenfritz, Kripfganz ('85), Gocksch, Ogilvie ('85), Fukkushima('03), Nakano, Miura, AO('11), Miura, Nakano, AO, Kawamoto('11)]

Does SC-LQCD show quarkyonic matter ?

P-SC-LQCD at $\mu=0$

T. Z. Nakano, K. Miura, AO, PRD 83 (2011), 016014 [arXiv:1009.1518 [hep-lat]] P-SC-LQCD reproduces $T_c(\mu=0)$ in the strong coupling region $(\beta=2N_c/g^2 \le 4)$

MC data: *SCL* (Karsch et al. (MDP), de Forcrand, Fromm (MDP)), $N_{\tau} = 2$ (de Forcrand, private), $N_{\tau} = 4$ (Gottlieb et al.('87), Fodor-Katz ('02)), $N_{\tau} = 8$ (Gavai et al.('90))

Phase diagram in P-SC-LQCD

K. Miura, T.Z. Nakano, AO, N. Kawamoto, PoS LATTICE2010 (2010), 202 [arXiv:1012.1509 [hep-lat]] ; in prep.

and predicts the existence of the "Quarkyonic-like" matter

• dl_p/dT has two peaks: Chiral-induced & Z_{Nc} -induced.

