Fluctuation Effects on the phase boundary in the strong coupling limit of lattice QCD **Akira Ohnishi (YITP) Takashi Z. Nakano (Kyoto U./ YITP)**

- **Introduction**
- **Mesonic auxiliary field effective action in the strong coupling limit of lattice QCD**
- **Monte-Carlo estimate of the phase boundary**
- **Summary**

QCD Phase diagram

- **Phase transition at high** *T*
	- **Physics of early universe: Where do we come from ?**
	- **RHIC, LHC, Lattice MC, pQCD, ….**
- **High μ transition**
	- **Physics of neutron stars: Where do we go ?**
	- **RHIC-BES, FAIR, J-PARC, Astro-H, Grav. Wave, …**
	- **Sign problem in Lattice MC → Model studies and/or Approximations are necessary.**

QCD phase transition in strong coupling limit

QCD phase transition at finite μ

Lattice QCD Monte-Carlo simulation has the sign problem. There are many attempts to avoid the sign problem, but the results at large μ ($\mu/T > 1$ or $\mu > m_{\pi}$) are not yet reliable.

(Reweighting, AC from Imaginary μ, Taylor expansion, cumulant expansion, …) Fodor, Katz ('02); de Forcrand, Philipsen('02); D'Elia, M. Lombardo ('03); Allton et al. ('04); Ejiri ('08); **...**

Phase diagram is obtained by using the auxiliary field method of strong coupling lattice QCD,

but those works rely on the mean field approximation.

Damgaard, Kawamoto, Shigemoto ('84); Damagaard, Hochberg, Kawamoto ('85); Bilic, Karsch, Redlich ('92); Fukushima ('03); Nishida ('03); Kawamoto, Miura, AO, Ohnuma ('07); Miura, Nakano, AO ('09); Miura, Nakano, AO, Kawamoto ('09); Nakano, Miura, AO ('10);

Monomer-Dimer-Polymer (MDP) algorithm was proposed and has been demonstrated to work in the strong coupling limit (SCL), but its extension to finite coupling cases is not easy.

Karsch, Mutter ('89), de Forcrand, Fromm ('09), **…**

Problem in mean field approaches in SC-LQCD

- **Three types of approximations**
	- **Strong coupling expansion (1/g²): Small number of plaquettes**
	- **Large dimensional approximation (1/d): Small number of quarks**
	- **Constant field assumption**
- **Phase diagram in mean field approaches in SCL may not match the phase diagram in MDP simulation result.**
	- **→ 1/d or constant field assumption ?**
		- **Higher orders in 1/d expansion: Still difficult to handle (Bosonization breaks chiral and/or gauge symmetry.)** *Azcoiti et al. ('03); Kawamoto, Miura, AO, Ohnuma ('07); AO, Nakano, Miura ('10).*
		- **Fluctuations of aux. fields: Not discussed seriously.**

We try to extend the auxiliary field method of SC-LQCD to include fluctuations. We try to extend the auxiliary field method of SC-LQCD to include fluctuations.

SC-LQCD Procedures

Lattice QCD action \rightarrow SCL quark & U_{ρ} action

Lattice QCD action with (unrooted) staggered Fermion

S LQCD =*S ^F*+*S^G S ^G* =− 1 *g* ² ∑ *plaq.* tr[*U ^P*+*U ^P* +] *f ^P S F* = 1 ² ∑ *x* [*V* + (*x*)−*V* − (*x*)]+ 1 ² ^γ ∑ *x , j* ημ (*x*)[χ̄*xU ^x , ^j* χ*x*+̂*j*−̄χ*^x*⁺ ̂*jU ^x , ^j* + ^χ*^x*]⁺∑ *x m*0 γ *M ^x V* + (*x*)=*e* μ ̄χ*xU ^x ,* ⁰ χ*^x*+0̂ *, V* − (*x*)=*e* −μ ̄χ*^x*+0̂*U ^x ,* ⁰ + χ*x , M ^x* =χ̄*^x* χ*^x , a*^τ =*a* /γ *, f ^P*=1 or 1/γ 1 *g* 2 **χ** *U* **χ** *U***⁺** *m***0**

- **Strong coupling expansion (Strong coupling limit)**
	- **Ignore plaquette action (1/g⁰)**
	- **Integrate out spatial link variables of min. quark number diagrams (1/d expansion)**

$$
\begin{array}{ccc}\n\mathbf{Q}^{\chi}_{L_0} & \mathbf{Q} & \mathbf{Q} & \mathbf{Q} \\
\mathbf{U}_0 & \mathbf{U}_0^+ & \mathbf{Q} & \mathbf{Q} & \mathbf{Q} \\
V_0^+ & V_0^- & M_x & M_{x+j} \\
\int dU U_{ab} U_{cd}^+ = \delta_{ad} \delta_{bc} / N_c\n\end{array}
$$

$$
S_{\text{eff}} = \frac{1}{2} \sum_{x} \left[V^{+}(x) - V^{-}(x) \right] - \frac{1}{4 N_c y^2} \sum_{x} M_x M_{x+\hat{j}} + \frac{m_0}{y} \sum_{x} M_x
$$

Introduction of Auxiliary Fields

MM **term = Four Fermi (two-body) interacting term** → Bosonization Non-Local NJL

$$
S^{(s)} = -\frac{1}{4N_c\gamma^2} \sum_{x,j} M_x M_{x+\hat{j}} = -\frac{L^3}{4N_c\gamma^2} \sum_{\tau,\mathbf{k}} f_M(\mathbf{k}) \widetilde{M}_{\mathbf{k}}(\tau) \widetilde{M}_{-\mathbf{k}}(\tau)
$$
\n
$$
= \frac{L^3}{4N_c\gamma^2} \sum_{\tau,\mathbf{k},f_M(\mathbf{k})>0} f_M(\mathbf{k}) \left[\varphi_{\mathbf{k}}(\tau)^2 + \varphi_{\mathbf{k}}(\tau)^2 + \varphi_{\mathbf{k}}(\widetilde{M}_{\mathbf{k}} + \widetilde{M}_{-\mathbf{k}}) - i\varphi_{\mathbf{k}}(\widetilde{M}_{\mathbf{k}} - \widetilde{M}_{-\mathbf{k}}) \right]
$$
\n
$$
+ \varphi_{\bar{\mathbf{k}}}(\tau)^2 + \varphi_{\bar{\mathbf{k}}}(\tau)^2 + i\varphi_{\bar{\mathbf{k}}}(\widetilde{M}_{\bar{\mathbf{k}}} + \widetilde{M}_{-\bar{\mathbf{k}}}) + \varphi_{\bar{\mathbf{k}}}(\widetilde{M}_{\bar{\mathbf{k}}} - \widetilde{M}_{-\bar{\mathbf{k}}}) \right]
$$
\n
$$
= \frac{\Omega}{2N_c\gamma^2} \sum_{k,f_M(\mathbf{k})>0} f_M(\mathbf{k}) \left[\sigma_k^* \sigma_k + \pi_k^* \pi_k \right] + \frac{1}{2N_c\gamma^2} \sum_x M_x \left[\sigma(x) + i\varepsilon(x)\pi(x) \right]
$$

$$
\sigma(x) = \sum_{k,f_M(\mathbf{k})>0} f_M(\mathbf{k})e^{ikx}\sigma_k , \quad \pi(x) = \sum_{k,f_M(\mathbf{k})>0} f_M(\mathbf{k})e^{ikx}\pi_k
$$

$$
\begin{split} &\sigma_k=\!\varphi_k+i\phi_k\ , \pi_k=\varphi_{\bar k}+i\phi_{\bar k}\\ &V_{x,y}=\!\frac{1}{2}\sum_j\Big(\delta_{x+\hat j,y}+\delta_{x-\hat j,y}\Big)\ ,\quad f_M({\bf k})=\sum_j\cos k_j\ ,\quad \bar {\bf k}={\bf k}+(\pi,\pi,\pi) \end{split}
$$

Fermion Determinant

Fermion action is separated to each spatial point and bi-linear → Determinant of Nτ x Nc matrix *Faldt, Petersson, 1986*

$$
\exp(-V_{\text{eff}}/T) = \int dU \int_{0}^{T_{1}} \sum_{I_{2}} \sum_{e^{i\omega} L_{i}} \sum_{I_{N}} e^{-\omega t} \int_{I_{N}} \mathbf{N} \mathbf{c} \times \mathbf{N} \mathbf{\tau}
$$
\n
$$
= \int dU_{0} \det \left[\frac{X_{N}[\sigma] \otimes 1_{c} + e^{-\mu/T} U^{+} + (-1)^{N_{c}} e^{\mu/T} U}{X_{N} \mathbf{\tau}} \right] \mathbf{\hat{N}} \mathbf{C}
$$
\n
$$
= X_{N}^{3} - 2 X_{N} + 2 \cosh(3 N_{\tau} \mu)
$$
\n
$$
I_{\tau}/2 = [\sigma(x) + i \epsilon(x) \pi(x)]/2 N_{c} y^{2} + m_{0}/y
$$
\n
$$
X_{N} = B_{N} + B_{N-2} (2; N - 1)
$$
\n
$$
B_{N} = I_{N} B_{N-1} + B_{N-2}
$$
\n
$$
B_{N} = \begin{bmatrix} I_{1} & e^{\mu} & 0 \\ 0 & -e^{-\mu} & I_{2} & e^{\mu} \\ 0 & -e^{-\mu} & I_{3} & e^{\mu} \\ \vdots & \vdots & \ddots & \vdots \\ -e^{-\mu} & I_{N} \end{bmatrix}
$$

Ohnishi, QH seminar (2011/07/01) **9**

−*e*

 $-\mu$

Auxiliary Field Monte-Carlo Integral

Effective action of Auxiliary Field

$$
S_{\text{eff}} = \frac{\Omega}{4 N_c Y^2} \sum_{k, f_M(\boldsymbol{k}) > 0} f_M(\boldsymbol{k}) \Big[\sigma_k^* \sigma_k + \pi_k^* \pi_k \Big] - \sum \log \Big[X_N(\boldsymbol{x})^3 - 2 X_N(\boldsymbol{x}) + 2 \cosh(3 N_{\tau} \mu) \Big]
$$

- **μ** dependence appears only in the log. *x*
- $\boldsymbol{\sigma}_\mathbf{k}, \boldsymbol{\pi}_\mathbf{k}$ have to be generated in momentum space, while $X_{_N}$ requires $\sigma(x)$ and $\pi(x) \rightarrow$ Fourier transf. in each step.

$$
\Sigma(x) = \frac{1}{2 N_c y^2} [\sigma(x) + i \varepsilon(x) \pi(x)] + \frac{m}{y}
$$

\n
$$
\sigma(x) = \sum_{k, f_M(k) > 0} f_M(k) e^{ikx} \sigma_k, \quad \pi(x) = \sum_{k, f_M(k) > 0} f_M(k) e^{ikx} \pi_k
$$

 $X_{\scriptscriptstyle N}$ is complex, and this action has the sign problem. **But the sign problem is less severe at larger μ.**

Auxiliary Field Monte-Carlo (σMC) Auxiliary Field Monte-Carlo (σMC) estimate of the phase boundary estimate of the phase boundary

Numerical Calculation

- **4⁴ asymmetric lattice + Metropolis sampling of** $\boldsymbol{\sigma}_\mathbf{k}$ **and** $\boldsymbol{\pi}_\mathbf{k}$ **.**
- **Metropolis sampling = One of the typical (popular) method of importance sampling**

Config. A	$P_{B\rightarrow A}$	Config. B
$S_{eff}(A)$	$S_{eff}(B)$	$S_{eff}(A)$ $S_{eff}(B)$
$P_{A\rightarrow B}$	$exp[S_{eff}(A)-S_{eff}(B)]$	$S_{eff}(A)$ $S_{eff}(B)$

- **Trial prob.: P try A→B= P try B→A (detailed balance)**
- **Pickup prob.: According to S**_{eff}**.**
- **In equilibrium, P(A)** $P_{A\rightarrow B} = P(B) P_{B\rightarrow A} \rightarrow P(A) \propto exp[-S_{eff}(A)]$
- **Typical sampling size: Thermalization=5x10⁴ , Sample=2x10⁶**

Numerical Calculation (cont.)

- **Jump size is chosen to be new sampling prob. ~ 0.5**
	- Always full Update of $\sigma_{\rm k}$ and $\pmb{\pi}_{\rm k}$ (This may not be very efficient.)
- **Initial cond.** = const. σ (σ =-2.5, -2.0, ..., 2.5)
	- **Chiral limit (m=0) simulation** \rightarrow **Symmetry in** $\sigma \leftrightarrow -\sigma$
	- $\bf{Deep\; Self\; min.\;at\;σ} \sim \sigma_{\rm vac}$ at low \bm{T}
- **Sign problem is not severe in 4⁴ lattice.**
	- \bullet <cos θ > ~ a few x 10⁻³ or more.
- **Computer: My PC (Core i7)**

Results (1) --- σ distribution

- **Low T simulation** [γ=1.2, N_{τ} =4 (T=0.36)]
	- **Two peaks (σ ~** σ **_{vac})** \rightarrow **One peak (σ = 0) → First order phase transition**
	- **Transition takes place at** μ_{0} \sim **0.4** $(\mu = \mu_0 \gamma^2 \sim 0.58)$
- **Medium T simulation** [$\gamma=2$, N_{$_{\tau}=4$} (T=1)]
	- **Two peaks merges to be one → Second order phase transition**
	- **Transition takes place at** $\mu_{_0}$ \sim **0.16**

Results (2) --- phase boundary

- **T, μ are assumed to be given b**y γ^2/N_τ , $\mu_0 \gamma^2$
- **Fluctuation of aux. field modifies the phase boundary.**
	- **Lower transition T**
	- **Larger transition μ**
- **σMC results are close to MDP results.**
	- **σMC overestimate T c** in μ ⁻⁰ region by \sim 7 $\%$.
- When $\mu\gamma^2$ scaling is assumed, **σMC and MDP results are reasonably match MF results.**

Discussion (1): First or Second order ?

- **First order in small lattice**
	- **→ The peak in the Winger phase grows and overcome NG peak(s) on phase boundary**
- **Second order transition**
	- **→ Two peaks merges to be one.**
- **γ=1.8 → First order, γ=2.0 → Second order**

Discussion (2): Comparison with other calc.

Summary

- **We have proposed an auxiliary field MC method, abbreviated as σMC** method, to simulate the SCL-LQCD quark-U₀ action (LO in **strong coupling (1/g⁰) and 1/d (1/d⁰) expansion; DKS action) without further approximation.** *c.f. Determinantal MC by Abe, Seki*
- **Sign problem is not easy, <cos** θ **> ~ a few x 10⁻³ at low** *T* **on 4⁴ lattice, but it is less severe at finite μ.**
- **Phase boundary is moderately modified from MF results by auxiliary field fluctuations, if** $\mu = \gamma^2 \mu_0$ **scaling is adopted.**
- **σMC results are compatible with MDP results, while the shift of T c at μ=0 is around half.**
- **By-product:** $X_{\scriptscriptstyle N}$ deviates from σ =0 MF value in the Wigner phase. **→ "Meson" mass in the Wigner phase ?**

Thank you

Strong Coupling Limit of Lattice QCD

Effective Potential *Fukushima ('04), Nishida ('04)*

$$
F_{\text{eff}} = \frac{N_c}{d} \overline{\sigma}^2 + V_{\text{eff}} (\overline{\sigma}, T, \mu)
$$

\n
$$
V_{\text{eff}} = -T \log \left[\frac{\sinh((N_c + 1)E_q/T)}{\sinh(E_q/T)} + 2 \cosh(N_c \mu/T) \right] (E_q(m)) = \arcsinh m)
$$

Meson propagator

Meson self-energy comes from the quark determinant, whose derivative (minor det.) is obtained from recursion relation. *Faldt, Petersson ('86)*

$$
G^{-1}(\mathbf{k}, \omega) = V_M^{-1}(\mathbf{k}) + F.T.\frac{\partial^2 V_{\text{eff}}}{\partial m(\tau)\partial m(\tau')}
$$
\n
$$
\exp(-V_{\text{eff}}/T) = \int dU_0 \begin{vmatrix} I_1 & e^{\mu} & 0 \\ -e^{-\mu} & 0 & e^{-\mu}U^+ \\ 0 & -e^{-\mu} & I_3 & e^{\mu} \end{vmatrix} e^{-\mu} U^+ \begin{vmatrix} I_k = 2(\sigma_k + m_0) \end{vmatrix}
$$
\n
$$
V^{\text{Im}} = \mathbf{D} \cdot \mathbf{S}^{\text{BS}}
$$

Prescriptions related to lattice staggered fermions

- **Mass = Pole energy of G at "zero" momentum**
	- **■** "Zero" momentum: <u>*k*</u> = -<u>*k*</u> (vector) → <u>*k*</u> = (0,0,0), (0,0,π), (0, π, 0) $k(k) = \sum \cos k_j = -3, -1, 1, 3$ for zero momentum $(k = -k)$ *j*=1 *d*

Four different types of meson appear ! (Bound state with doubler)

• "Zero" Euclidean energy: $ω = -ω \rightarrow ω = 0$ or $π$

 \rightarrow Search for the pole with $(\underline{k}, \omega) = (\delta_{\pi}, \delta_{\pi}, \delta_{\pi}, iM + \delta_{\pi}) (\delta_{\pi} = 0 \text{ or } \pi)$

$$
G^{-1}(\mathbf{k} = \mathbf{0}^{\'}), \omega = i \, M + \delta \pi) = \frac{2 \, N_c}{\kappa} + \frac{4 \, N_c}{d} \frac{\bar{\sigma} \left(\bar{\sigma} + m_0 \right)}{\pm \cosh M + \cosh 2 \, E_q} = 0
$$

Hadron Mass in SCL-LQCD (Finite T)

AO, N. Kawamoto, K. Miura, Mod. Phys. Lett. A 23 (2008)2459.

Meson Mass

Equilibrium condition: $\partial V_{\text{eff}}/\partial \sigma = -2N_c \sigma/d$

→ Meson masses are determined by the chiral condensate, σ.

- **Chiral condensate is a function of (T, μ).**
- **→** *Approximate Brown-Rho scaling emerges in SCL-LQCD*
	- **Many eservations: SCL-LQCD, LO in 1/d expansion, staggered fermion, mean field app. (no feed back of fluc.),**

Medium Modification of Meson Masses

Scale fixing

- **Search for σ**_{νac} to minimize free E.
- **Assign κ=-3, -1 as π and ρ**
- Determine m_0 and a^{-1} (lattice unit) **to fit m**_{$_{\pi}$} /m_{$_{\rho}$} (a=497 MeV)

Medium modification

- **Search for** $\sigma(T, \mu) \rightarrow$ **Meson mass**
- **Vacuum mass ~ Zero T results** *Kluberg-Stern, Morel, Petersson, 1982; Kawamoto, Shigemoto, 1982*

Summary

- **Chiral condensates and Polyakov loop at finite** *T* **and** *μ* **are investigated with SC-LQCD.**
	- **Partial restoration of χ sym. is expected at finite T and/or μ in SC-LQCD and P-SC-LQCD.**
	- **Qualitative behavior is similar to NJL and PNJL results.**
	- \bullet Quantitative differences to be further discussed \rightarrow T_c and μ_c, Density gap at finite μ,Critical point,
- \blacksquare Meson masses at finite T and μ are studied in SCL-LQCD.
	- **Results with mean field approx. shows Brown-Rho scaling behavior.**
	- **Loop effects of mesons are expected to enhance meson masses after χ restoration** *Hatsuda, Kunihiro / Kapusta text book*
	- **Finite coupling effects and self-consistent treatment (SD type) would be interesting.**

Homework: Can we do it ?

Present treatment

Self-consistent treatment

Is it possible to carry out the self-consistent calculation of meson and quark propagator in SC-LQCD hopefully with NLO/NNLO/PL effects (in two weeks) ? Is it possible to carry out the self-consistent calculation of meson and quark propagator in SC-LQCD hopefully with NLO/NNLO/PL effects (in two weeks) ?

