Equilibration in classical Yang-Mills dynamics A. Ohnishi¹, T. Kunihiro², B. Müller³, A. Schäfer⁴, T.T.Takahashi⁵, A. Yamamoto⁶ 1. Yukawa Inst. for Theoretical Physics, Kyoto U., 2. Kyoto U., 3. Duke U., 4. U. Regensburg, 5. Gunma C.T., 6. U. Tokyo Phys. Rev. D 82 (2010), 114015 (9 pages) [arXiv:1008.1156]

Equation of Motion
$$\dot{X}(t) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} H_{xx} & H_{xp} \\ H_{px} & H_{pp} \end{pmatrix} \delta X(t)$$

$$= K(t) \delta X(t)$$
$$= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} H_{x} \\ H_{p} \end{pmatrix}, \quad X = \begin{pmatrix} x \\ p \end{pmatrix}$$

- Local Lyapunov exponent = Eigenvalue of K(t) \rightarrow standard instability
- (Global) Lyapunov exponent $\rightarrow |\delta X| \propto \exp(\lambda t)$
 - \rightarrow entropy production in a long time scale
- Intermediate Lyapunov exponent = Eigenvalue of U(t,t+ Δt)

Chaotic nature of CYM does not fully explain early thermalization, but its contribution is significant !

Summary & Discussion

- We have developed a method to evaluate the equilibration time of Classical Yang-Mills (CYM) system.
 - Entropy production rate
 - = Kolmogorov-Sinai entropy (also in quantum system)

- = sum of positive *Intermediate* Lyapunov exponent
- Equilibration time
- = "Equilibrium entropy" / "Entropy production rate"
- Spatial lattice simulation of CYM shows *conformal* nature of the entropy production rate, S_{KS} .
- Mode-mode coupling is strong, and energy partition (~equilibration) proceeds with this coupling. • Sum of positive ILEs follow $S_{KS} \propto \epsilon^{1/4}$ in CYM.
- If equilibration in CYM is dominant, conformal nature suggests $au_{eq} \propto 1/T.$
- **Equilibration time at RHIC is estimated** $\tau_{\rm eq} \simeq \frac{5}{T} + \tau_{\rm delay} \simeq 3 \, {\rm fm}/c$ at $T = 350 \, {\rm MeV}$
- τ_{eq} from CYM is not short enough, but non-negligible. Initial cond.=random mag., No expansion, No quark, No quantum effects.