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Introduction
Time Evolution at RHIC & LHC

τ < 0    fm/c → Color Glass Condensate
0 < τ < τ

eq
    → Thermalization

τ > τ
eq

          → Success of (nearly ideal) Hydrodynamics 
   ( τ

eq
 < 1.5 fm/c)

Mechanism of Early Thermalization
decoherence: τ

eq
 ~ 1 / Q

s
 ~ 0.2 fm/c (Fastest !)

but entropy production is not enough for thermalization
(R. J. Fries, B. Müller and A. Schäfer, PRC 79('09)034904)
Instability of Classical Yang-Mills (CYM) field
➢ Weibel & Nielsen-Olesen Instability
→ Mechanism of strong field decay into particles

toward thermalization is not known yet.
Chaotic behavior
➢ Entropy production rate = Kolmogorov-Sinai entropy (S

KS
)

(T.Kunihiro, B. Müller, AO, A. Schäfer, PTP121('09)555) 
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Chaotic CYM Dynamics
EOM and Deviation of two trajectories

Local Lyapunov exponent = Eigenvalue of K(t)
→ standard instability   
(Global) Lyapunov exponent →  |δ X|  exp( λt ) ∝
→ entropy production in a long time scale
Intermediate Lyapunov exponent = Eigenvalue of U(t,t+ Δt)

→ U can be evaluated by using Trotter formula
Most relevant to entropy production

Entropy production rate

Classical Yang-Mills field on the lattice

CYM is conformal !

Chaotic CYM Dynamics
EOM and Deviation of two trajectories

Local Lyapunov exponent = Eigenvalue of K(t)
→ standard instability   
(Global) Lyapunov exponent →  |δ X|  exp( λt ) ∝
→ entropy production in a long time scale
Intermediate Lyapunov exponent = Eigenvalue of U(t,t+ Δt)

→ U can be evaluated by using Trotter formula
Most relevant to entropy production

Entropy production rate

Classical Yang-Mills field on the lattice

CYM is conformal !
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Results
Distance between two trajectories

Exponential growth → chaotic behavior 
Growth rate ~ max. Lyapunov exponent = indep. of lattice size

 Distribution of ILEs
(LLE)2 ~ - (potential curvature)
Max. ILE rapidly decreases,
while # of modes with positive
ILE increases.
→ Exponential growth

spread over various modes.

 Energy density dep.
Large ε (=E/V) → Rapid increase of distance 
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1/ 4 , cKS≃2×L3 L=spatial lattice size 

eq≃
5
T
delay≃3fm /c T=350 MeV

Chaotic nature of CYM does not fully explain
early thermalization, but its contribution is significant !
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Summary & Discussion
We have developed a method to evaluate the equilibration time of 
Classical Yang-Mills (CYM) system.

Entropy production rate
= Kolmogorov-Sinai entropy (also in quantum system)
= sum of positive Intermediate Lyapunov exponent
Equilibration time
= "Equilibrium entropy" / "Entropy production rate"

 Spatial lattice simulation of CYM shows conformal nature of the 
entropy production rate, S

KS
. 

 Mode-mode coupling is strong, and energy partition 
(~equilibration) proceeds with this coupling.
Sum of positive ILEs follow S

KS
  ∝ ε1/4 in CYM.

If equilibration in CYM is dominant, conformal nature suggests 
τ

eq
  1/T.∝

Equilibration time at RHIC is estimated

τ
eq

 from CYM is not short enough, but non-negligible.
Initial cond.=random mag., No expansion, No quark, No 
quantum effects.
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