Auxiliary field Monte-Carlo study of the QCD phase diagram at strong coupling Akira Ohnishi (YITP) Takashi Z. Nakano (Kyoto U./ YITP)

- Introduction
- Strong coupling lattice QCD (mean field results)
- Auxiliary field effective action in the Strong Coupling Limit
- Monte-Carlo estimate of the phase boundary
- Summary

AO, T. Z. Nakano, in prep.

QCD Phase diagram

- Phase transition at high T
 - Physics of early universe: Where do we come from ?
 - RHIC, LHC, Lattice MC, pQCD,
- High μ transition
 - Physics of neutron stars: Where do we go ?
 - RHIC-BES, FAIR, J-PARC, Astro-H, Grav. Wave, ...
 - Sign problem in Lattice MC
 - → Model studies, Approximations, Functional RG, ...

CP sweep during **BH** formation

AO, H. Ueda, T. Z. Nakano, M. Ruggieri, K. Sumiyoshi, PLB, to appear [arXiv:1102.3753 [nucl-th]]

QCD based approaches to Cold Dense Matter

- Effective Models (P)NJL, (P)QM, Random Matrix, ... E.g.: K.Fukushima, PLB 695('11)387 (PNJL+Stat.).
- Functional (Exact, Wilsonian) RG E.g.: T. K. Herbst, J. M. Pawlowski, B. J. Schaefer, PLB 696 ('11)58 (PQM-FRG).
- Expansion / Extrapolation from μ=0
 - AC, Taylor expansion, $\dots \rightarrow \mu/T < 1$
 - Cumulant expansion of θ dist.
 (S. Ejiri, ...)
- Strong Coupling Lattice QCD
 - Mean field approaches
 - Monomer-Dimer-Polymer (MDP) simulation

McLerran, Redlich, Sasaki ('09)

Strong Coupling Lattice QCD for finite µ

Mean Field approaches

Damagaard, Hochberg, Kawamoto ('85); Bilic, Karsch, Redlich ('92); Fukushima ('03); Nishida ('03); Kawamoto, Miura, AO, Ohnuma ('07).

MDP simulation

AWA INSTITUTE FOR

Karsch, Mutter('89); de Forcrand, Fromm ('10); de Forcrand, Unger ('11)

- Partition function = sum of config. weights of various loops.
- Applicable only to Strong Coupling Limit (1/g²=0) at present

Miura, Nakano, AO, Kawamoto, arXiv:1106.1219

de Forcrand, Unger ('11)

Can we include both fluctuation and finite coupling effects ? \rightarrow One of the candidates = Auxiliary field MC

SC-LQCD with Fermions & Polyakov loop: Outline

Effective Action & Effective Potential (free energy density)

$$Z = \int D[\chi, \bar{\chi}, U_0, U_j] \exp \begin{bmatrix} -\frac{\eta_{\mu}}{2} & U + \frac{\eta_{\mu}}{2} & U + \frac{\eta_{\mu}}{2} & U \\ -\frac{\eta_{\mu}}{2} & U + \frac{\eta_{\mu}}{2} & U + \frac{\eta_{\mu}}{2} & U \\ \bar{\chi} & U + \frac{\eta_{\mu}}{2} & U + \frac{\eta_{\mu}}{2} & U \\ -\frac{\eta_{\mu}}{2} & U \\ -\frac{\eta_{\mu}}$$

KAWA INSTITUTE FOR

SC-LQCD with Fermions

Effective Action with finite coupling corrections Integral of $exp(-S_G)$ over spatial links with $exp(-S_F)$ weight $\rightarrow S_{eff}$

$$S_{\text{eff}} = S_{\text{SCL}} - \log \langle \exp(-S_G) \rangle = S_{\text{SCL}} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_c$$

 $<S_{G}^{n}>_{c}=$ Cumulant (connected diagram contr.) *c.f. R.Kubo('62*)

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} (V_{x}^{+} - V_{x}^{-}) - \frac{b_{\sigma}}{2d} \sum_{x,j>0} [MM]_{j,x} \qquad SCL \ (Kawamoto-Smit, \ '81)$$

$$+ \frac{1}{2} \frac{\beta_{\tau}}{2d} \sum_{x,j>0} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} - \frac{1}{2} \frac{\beta_{s}}{d(d-1)} \sum_{x,j>0,k>0,k\neq j} [MMMM]_{jk,x} \qquad NLO \ (Faldt-Petersson, \ '86)$$

$$- \frac{\beta_{\tau\tau}}{2d} \sum_{x,j>0} [W^{+}W^{-} + W^{-}W^{+}]_{j,x} - \frac{\beta_{ss}}{4d(d-1)(d-2)} \sum_{\substack{x,j>0,|k|>0,|l|>0\\|k|\neq j,|l|\neq j,|l|\neq |k|}} [MMMM]_{jk,x} [MM]_{j,x+\hat{l}}$$

$$+ \frac{\beta_{\tau s}}{8d(d-1)} \sum_{x,j>0,|k|\neq j} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} \left([MM]_{j,x+\hat{k}} + [MM]_{j,x+\hat{k}+\hat{0}} \right) \qquad NNLO \ (Nakano, Miura, AO, \ '09]$$

WA INSTITUTE FOR

SC-LQCD Eff. Pot. with Fermions & Polyakov loop

Effective potential [free energy density, NLO + LO(Pol. loop)]

$$\begin{aligned} \mathcal{F}_{\text{eff}}(\Phi;T,\mu) &\equiv -(T\log \mathcal{Z}_{\text{LQCD}})/N_s^d = \mathcal{F}_{\text{eff}}^{\chi} + \mathcal{F}_{\text{eff}}^{\text{Pol}} & \text{aux. fields} \\ \mathcal{F}_{\text{eff}}^{\chi} &\simeq \left(\frac{d}{4N_c} + \beta_s \varphi_s\right) \sigma^2 + \frac{\beta_s \varphi_s^2}{2} + \frac{\beta_\tau}{2} (\varphi_\tau^2 - \omega_\tau^2) - N_c \log Z_{\chi} & \text{w.f. ren.} \\ -N_c E_q - T(\log \mathcal{R}_q(T,\mu) + \log \mathcal{R}_{\bar{q}}(T,\mu)) & \text{thermal} \\ \mathcal{R}_q(T,\mu) &\equiv 1 + e^{-N_c(E_q - \bar{\mu})/T} + N_c \left(L_{p,\mathbf{x}} e^{-(E_q - \bar{\mu})/T} + \bar{L}_{p,\mathbf{x}} e^{-2(E_q - \bar{\mu})/T}\right) \\ \mathcal{F}_{\text{eff}}^{\text{Pol}} &\simeq -2T dN_c^2 \left(\frac{1}{g^2 N_c}\right)^{1/T} \bar{\ell}_p \ell_p - T \log \mathcal{M}_{\text{Haar}}(\ell_p, \bar{\ell}_p) & \text{quad. coef.} \\ \text{Haar measure} \end{aligned}$$

- Strong coupling lattice QCD with Polyakov loop (P-SC-LQCD)
 = Polyakov loop extended Nambu-Jona-Lasino (PNJL) model (Haar measure method, quadratic term fixed)
 + higher order terms in aux. fields
 - quark momentum integral

P-SC-LQCD at $\mu = 0$

T. Z. Nakano, K. Miura, AO, PRD 83 (2011), 016014 [arXiv:1009.1518 [hep-lat]] P-SC-LQCD reproduces $T_c(\mu=0)$ in the strong coupling region $(\beta=2N_c/g^2 \le 4)$

MC data: *SCL* (Karsch et al. (MDP), de Forcrand, Fromm (MDP)), $N_{\tau} = 2$ (de Forcrand, private), $N_{\tau} = 4$ (Gottlieb et al.('87), Fodor-Katz ('02)), $N_{\tau} = 8$ (Gavai et al.('90))

Approximations in Pol. loop extended SC-LQCD

Approximations in Pol. loop extended SC-LQCD

- Strong coupling expansion
 - Fermion terms: LO(1/g⁰, SCL), NLO(1/g²), NNLO (1/g⁴)
 - Plaquette action: LO (1/g^{2Nτ})
- Large dimensional approximation
 - 1/d expansion (d=spatial dim.)

 → Smaller quark # configs. are preferred.
 Σ_j M_x M_{x+j} = O(1/d⁰) → M ∝ d^{-1/2} → χ ∝ d^{-1/4}
 - Only LO (1/d⁰) terms are mainly evaluated.
- (Unrooted) staggered Fermion
 - Nf=4 in the continuum limit.
- Mean field approximation
 - Auxiliary fields are assumed to be constant.

This work: Auxiliary Field MC in SCL

Strong Coupling Expansion

Lattice QCD action (aniso. lattice, unrooted staggered Fermion)

$$S_{LQCD} = S_F + S_G \quad S_G = -\frac{1}{g^2} \sum_{plaq.} \operatorname{tr} \left[U_P + U_P^+ \right] f_P \qquad \bigoplus_{x,j} U_{x,j} U_{x,j} U_{x,j} U_{x,j} \int_{x,j} U_{x,j} U_{x,j} \int_{x,j} U_{x$$

 Strong coupling expansion (Strong coupling limit)

V

AWA INSTITUTE FOR

- Ignore plaquette action (1/g²)
- Integrate out spatial link variables of min. quark number diagrams (1/d expansion)

$$\int_{0}^{\chi} \frac{\Phi}{U_{0}} + \frac{\Phi}{U_{0}} + \frac{\Phi}{M_{0}} = \int_{0}^{\chi} \frac{\Phi}{V_{0}} + \frac{\Phi}{M_{0}} + \frac{\Phi}{M_{$$

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} \left[V^{+}(x) - V^{-}(x) \right] - \frac{1}{4 N_{c} \gamma^{2}} \sum_{x, j} M_{x} M_{x+j} + \frac{m_{0}}{\gamma} \sum_{x} M_{x}$$

Introduction of Auxiliary Fields

Bosonization of MM term (Four Fermi (two-body) interaction)

$$S_{F}^{(s)} = -\alpha \sum_{j,x} M_{x} M_{x+\hat{j}} = -\alpha \sum_{x,y} M_{x} V_{x,y} M_{y} \quad \left[V_{x,y} = \frac{1}{2} \sum_{j} \left(\delta_{x+\hat{j}y} + \delta_{x-\hat{j},y} \right) \right]$$

Meson matrix (V) has positive and negative eigen values

$$f_{M}(\mathbf{k}) = \sum_{i} \cos k_{i}$$
, $f_{M}(\bar{\mathbf{k}}) = -f_{M}(\mathbf{k}) [\bar{\mathbf{k}} = \mathbf{k} + (\pi, \pi, \pi)]$

- Bosonization of Negative mode: Extended HS transf.
 → Introducing "*i*" gives rise to the sign problem.
 Miura, Nakano, AO (09), Miura, Nakano, AO, Kawamoto (09)

$$\exp(\alpha A B) = \int d\varphi d\varphi \exp[-\alpha(\varphi^2 - (A + B)\varphi + \varphi^2 - i(A - B)\varphi)]$$

$$\approx \exp[-\alpha(\overline{\psi}\psi - A\psi - \overline{\psi}B)]_{\text{stationary}}$$

Introduction of Auxiliary Fields

Phase cancellation mechanism in σMC

Bosonized effective action

$$S_{\text{eff}} = \frac{1}{2} \sum_{x, y} \bar{\chi}_{x} D_{x, y} \chi_{y} + \frac{\Omega}{4 N_{c} \gamma^{2}} \sum_{k, f_{M}(\boldsymbol{k}) > 0} f_{M}(\boldsymbol{k}) \Big[\sigma_{k}^{*} \sigma_{k} + \pi_{k}^{*} \pi_{k} \Big]$$

$$D_{x, y} = \delta_{x+\hat{0}, y} \delta_{x, y} e^{\mu/\gamma^{2}} U_{x, 0} - \delta_{x, y+\hat{0}} \delta_{x, y} e^{-\mu/\gamma^{2}} U_{y, 0}^{+} + 2 \Big[\Sigma_{x} + \frac{m_{0}}{\gamma} \Big] \delta_{x, y} , \quad \Sigma_{x} = \frac{\sigma_{x} + i\varepsilon_{x} \pi_{x}}{2 N_{c} \gamma^{2}}$$

$$\sigma(x) = \sum_{k, f_{M}(\boldsymbol{k}) > 0} f_{M}(\boldsymbol{k}) e^{ikx} \sigma_{k}, \quad \pi(x) = \sum_{k, f_{M}(\boldsymbol{k}) > 0} f_{M}(\boldsymbol{k}) e^{ikx} \pi_{k}$$

- Fermion matrix is spatially separated
 → Fermion det at each point
- Imaginary part (π) involves $\varepsilon = (-1)^{x_0+x_1+x_2+x_3} = \exp(i \pi (x_0+x_1+x_2+x_3))$
 - \rightarrow Phase cancellation of nearest neighbor spatial site det for π field having low k

Fermion Determinant

Faldt, Petersson, 1986 Fermion action is separated to each spatial point and bi-linear \rightarrow Determinant of N τ x <u>Nc matrix</u>

$$\exp(-V_{\text{eff}}/T) = \int dU_{0} \int \frac{I_{1}}{U_{2}} \int \frac{I_{2}}{e^{\mu}} \int \frac{e^{-\mu}U^{+}}{I_{3}} \int \frac{1}{e^{\mu}} \int \frac{e^{-\mu}U^{+}}{I_{N}} \int \frac{1}{e^{\mu}} \int \frac{e^{-\mu}U^{+}}{I_{N}} \int \frac{1}{e^{\mu}} \int \frac{$$

 \boldsymbol{B}

Auxiliary Field Monte-Carlo Integral

Effective action of Auxiliary Fields

$$S_{\text{eff}} = \frac{\Omega}{4N_c \gamma^2} \sum_{k, f_M(\boldsymbol{k}) > 0} f_M(\boldsymbol{k}) \Big[\sigma_k^* \sigma_k + \pi_k^* \pi_k \Big] \\ - \sum_{\boldsymbol{x}} \log \Big[X_N(\boldsymbol{x})^3 - 2X_N(\boldsymbol{x}) + 2\cosh(3N_\tau \mu) \Big] \\ X_N(\boldsymbol{x}) = X_N \big[\sigma(\boldsymbol{x}, \tau), \pi(\boldsymbol{x}, \tau) \big]$$

- μ dependence appears only in the log.
- σ_k, π_k have to be generated in momentum space, while X_N requires $\sigma(x)$ and $\pi(x) \rightarrow$ Fourier transf. in each step.
- X_N is complex, and this action has the sign problem.
 But the sign problem is milder because of the phase cancellation and is less severe at larger μ.

Let's try at finite µ !

Auxiliary Field Monte-Carlo (σMC) estimate of the phase boundary

Numerical Calculation

- **4** 4 asymmetric lattice + Metropolis sampling of σ_k and π_k .
- Metropolis sampling of full configuration (σ_k and π_k) at a time.
 (efficient for small lattice)
- Initial cond. = const. σ
- **Chiral limit (m=0) simulation** \rightarrow Symmetry in $\sigma \leftrightarrow$ σ
- Sign problem is not severe ($\langle \cos \theta \rangle \sim (0.9-1.0)$) in a 4⁴ lattice.
- Computer: My PC (Core i7)

Results (1): σ distribution

- **Fixed** μ/T simulation: $\mu/T = 0 \sim 2.4$
- **Low \mu region: Second order** (Single peak: finite $\sigma \rightarrow zero$)
- High μ region: First order (Dist. func. has two peaks)

Results (2): Susceptibility and Quark density

Weight factor <cos θ>

$$\langle \cos \theta \rangle = Z/Z_{abs}$$

$$Z = \int D\sigma_k D\pi_k \exp(-S_{eff})$$

$$= \int D\sigma_k D\pi_k \exp(-\operatorname{Re} S_{eff}) e^{i\theta}$$

$$Z_{abs} = \int D\sigma_k \pi_k \exp(-\operatorname{Re} S_{eff})$$

Chiral susceptibility

$$\chi = -\frac{1}{L^3} \frac{\partial^2 \log Z}{\partial m_0^2}$$

Quark number density

$$\rho_q = -\frac{1}{L^3} \frac{\gamma^2}{N_{\tau}} \frac{\partial \log Z}{\partial \mu}$$

Results (3): Phase diagram

By taking $T = \gamma^2 / N_{\tau}$,

γ dep. of the phase boundary becomes small. *Bilic et al. ('92)*

- Definitions of phase boundar
 - $\phi^2 = \sigma^2 + \pi^2$ dist. peak: finite or zero (red curve)
 - Chiral susceptibility peak (blue)
- Fluctuation effect
 - Reduction of T_c at $\mu=0$
 - Enlarged hadron phase at medium T
 - \rightarrow Consistent with MDP

de Forcrand, Fromm ('09); de Forcrand, Unger ('11)

Clausius-Clapeyron Relation

First order phase boundary \rightarrow two phases coexist

$$P_{h} = P_{q} \rightarrow dP_{h} = dP_{q} \rightarrow \frac{d\mu}{dT} = -\frac{s_{q} - s_{h}}{\rho_{q} - \rho_{h}}$$
$$dP_{h} = \rho_{h}d\mu + s_{h}dT, \quad dP_{q} = \rho_{q}d\mu + s_{q}dT$$

Strong coupling lattice

- SCL: Quark density is larger than half-filling, and "Quark hole" carries entropy → dµ/dT > 0
- NLO, NNLO $\rightarrow d\mu/dT < 0$

AO, Miura, Nakano, Kawamoto ('09)

Summary

- We have proposed an auxiliary field MC method (σMC), to simulate the SCL quark-U₀ action (LO in strong coupling (1/g⁰) and 1/d (1/d⁰) expansion) without further approximation. *c.f. Determinantal MC by Abe, Seki*
- Sign problem is mild in small lattice (<cos θ> ~ (0.9-1) for 4⁴), because of the phase cancellation coming from nearest neighbor interaction.
- Phase boundary is moderately modified from MF results by fluctuations, if $T = \gamma^2 / N_{\tau}$ and $\mu = \gamma^2 \mu_0$ scaling is adopted.
- σMC results are compatible with MDP results, while the shift of T_c at μ=0 is around half (LO in 1/d expansion in σMC).
- **Extension to NLO SC-LQCD is straightforward.**

ΥΤΡ

To do: Larger lattice, finite coupling, different Fermion, higher
 1/d terms including baryonic action and chiral Polyakov coupling.

Thank you

