Lambda-Lambda correlation in high-energy heavy-ion collisions

Akira Ohnishi, Takenori Furumoto YITP, Kyoto Univ.

- Introduction: Where is "H" ?
- ΛΛ correlation in heavy-ion collisions
- Coupling effects to EN
- **Summary**

VII Workshop on Particle Correlation and Femtoscopy, Tokyo, Japan, Sep.20-24, 2011

Furumoto, AO, in prep.

Ohnishi @ WPCF 2011, Sep.20-24, 2011, Tokyo, Japan

Where is the S=-2 dibaryon (uuddss) "H"?

- RHIC & LHC = Hadron Factory including Exotics
- "H" would be formed as frequently as stat. model predicts. Cho,Furumoto,Hyodo,Jido, Ko, Lee,Nielsen,AO,Sekihara,Yasui,Yazaki (ExHIC Collab.), PRL('11)212001; arXiv:t:1107.1302

Nagara event

⁶He hypernuclei

Takahashi et al., PRL87('01)212502 (KEK-E373 experiment) Lambpha $m(_{MA}^{6}He) = 5951.82 \pm 0.54 MeV$

 $\begin{array}{l} B_{\rm AA} = 7.25 \pm 0.19^{\rm +0.18}_{\rm -0.11} {\rm MeV} \\ \Delta B_{\rm AA} = 1.01 \pm 0.20^{\rm +0.18}_{\rm -0.11} {\rm MeV} \\ ({\rm assumed} \ B_{\rm E}^{\rm -} = 0.13 \ {\rm MeV}) \end{array}$

 \rightarrow B_{AA}= 6.91 MeV (PDG modified(updated) Ξ^{-} mass)

$$\overline{Z}^{-} + {}^{12}C \longrightarrow {}^{6}_{\Lambda\Lambda}He + {}^{4}He + t$$
$${}^{6}_{\Lambda\Lambda}He \longrightarrow {}^{5}_{\Lambda}He + p + \pi^{-}$$

Ohnishi @ WPCF 2011, Sep. 20-24, 2011, Tokyo, Japan

Lattice QCD predicts bound "H"

"H" bounds with heavy π (M_{π} > 400 MeV)

IKAWA INSTITUTE FOR

NPLQCD Collab., PRL 106 (2011) 162001; HAL QCD Collab., PRL 106 (2011) 162002

Ohnishi @ WPCF 2011, Sep. 20-24, 2011, Tokyo, Japan

 $\Lambda\Lambda$ correlation from (K⁻,K⁺ $\Lambda\Lambda$) reaction

Enhancement at ~ 2 M(Λ)+ 10 MeV, CL=2 σ

Exotics from Heavy-Ion Collisions

Cho,Furumoto,Hyodo,Jido, Ko, Lee,Nielsen,AO,Sekihara,Yasui,Yazaki (ExHIC Collab.), PRL('11)212001; arXiv:t:1107.1302

Ohnishi @ WPCF 2011, Sep.20-24, 2011, Tokyo, Japan

Previous Work (before RHIC & Nagara)

- Hadronic transport (JAM)
 + Two Range Gaussian V_{AA}
 - w/ bound state \rightarrow w.f. node suppresses C(q)

AO, Hirata, Nara, Shinmura, Akaishi, NPA670('00)297c [arXiv:nucl-th/9903021]; SNP2000 proc. p175. JAM: Nara,Otuka, AO, Niita, Chiba, PRC61 ('00), 024901.

Ohnishi @ WPCF 2011, Sep. 20-24, 2011, Tokyo, Japan

AA correlation in HIC

Merit of HIC to measure ΛΛ correlation

Source is "simple and clean" !
 T, μ, flow, size, ... are well-analyzed.
 ↔ (x,p) correlated source in (K⁻,K⁺)
 [c.f. e⁺e⁻ Wes Metzger (Sep.20)]

- Source size is BIG and probes w.f. tail.
- Discovery of "H" and/or Constraint on ΛΛ int.
- Gaussian Source + s-wave int.

c.f. P. Danielewicz' talk; Bauer, Gelbke, Pratt, Annu. Rev. Nucl. Part. Sci. 42('92)77.

$$C_{\Lambda\Lambda}(q) = \frac{\int dx_1 dx_2 S(x_1, p+q) S(x_2, p-q) |\psi^{(-)}(x_{12}, q)|^2}{\int dx_1 dx_2 S(x_1, p+q) S(x_2, p-q)}$$

$$\simeq 1 - \frac{1}{2} \exp(-q^2 R^2) + \frac{1}{2} \int dr S_{12}(r) (|\chi_0(r)|^2 - |j_0(qr)|^2)$$

(χ_0 : s-wave wave func., $S_{12}(x) = (R \sqrt{\pi})^{-3} \exp(-r^2/R^2)$)

Data from STAR will appear soon (Neha Shah, Huan Z. Huang).

Toward AA correlation at RHIC: Source Size

- Source size : R = (2-4.5) fm
 - Smaller than last collision point dist. results in hadron cascade (JAM) \rightarrow Interaction in the early stage at RHIC
 - Smaller than π , K homogeneity length \rightarrow Further smaller for Λ ?

9 Ohnishi @ WPCF 2011, Sep. 20-24, 2011, Tokyo, Japan

Toward A A correlation at RHIC: AA interaction

- \checkmark **A A interaction**
 - After Nagara, "plausible" $\Lambda\Lambda$ interaction becomes weaker. Bond energy $\Delta B_{\Lambda\Lambda}$ =0.7 MeV (old guess=(3-6) MeV)
 - fss2 (quark model interaction): No bound state
 Y. Fujiwara, M. Kohno, C. Nakamoto, Y. Suzuki, PRC64('01)054001 Bond energy ΔB_{ΛΛ}= (1.2-1.9) MeV (depending on ΛN int.)
 - Nijmegen model D (boson exch., Rc=0.46 fm): with bound state M.M. Nagels, T.A. Rijken, J.J. de Swart, PRD15('77)2547
 B.E.(H) ~ 1.6 MeV
- **Resonance "H" btw** $\Lambda\Lambda$ Ξ N threshold \rightarrow Couple channel calc. is required
 - Set A, B, C (weak, medium strong coupling) [single range Gauss, range=0.5, 1, 2 fm, strength=80,40,20 MeV]
 - EN potential (diagonal) effects on C(q) is almost negligible.

Ohnishi @ WPCF 2011, Sep.20-24, 2011, Tokyo, Japan

A A correlation at RHIC: Results

- Typical example: fss2 + ΞN coupling, R= 2 fm
- Single channel results
 - Interaction effects should be clearly seen !
 - Dip around Q= 80 MeV/c
 - (suppression from anti-sym. + enh. from $\Lambda\Lambda$ int.)
- Couple channel results
 - Suppression of ΛΛ channel w.f. → smaller C(Q)

Ohnishi @ WPCF 2011, Sep.20-24, 2011, Tokyo, Japan

Source size dependence

- Larger size → Smaller Q region
- No dip structure for larger size.
 (Anti-symmetrization effects > Interaction effects)
 Sensitive only to the scattering length.

$$C(Q \to 0) \simeq \frac{1}{2} - \frac{2}{\sqrt{\pi}} \frac{a_0}{R} + \left(\frac{a_0}{R}\right)^2$$

Ohnishi @ WPCF 2011, Sep.20-24, 2011, Tokyo, Japan

Bound state effects

- **Example with bound "H": ND46 + EN coupling**
- Single channel
 - B.E.(H) ~ 1.6 MeV, $a_0 = 4.6$ fm
 - Stronger suppression than free case for Q > 100 MeV/c or R = 4 fm
- Couple channel
 - Enhancement of CF(Q)

Ohnishi @ WPCF 2011, Sep.20-24, 2011, Tokyo, Japan

Summary

- ΛΛ interaction and the existence of "H" are still interesting subjects in hadron physics (KEK-E522 data, Lattice QCD calculation).
- Once we know the source function and correlation data, it is possible to obtain information on unknown interaction.
 - ΛΛ in HIC: Simple and clean source, Large source size, No Coulomb.
- AA Correlation function is sensitive enough to source size, potential (diagonal), and coupling potential. Relation to the pole position should be examined.
- We are working with STAR collaboration to investigate what we can learn from ΛΛ correlation function (Neha Shah and Huan Huang).
 - To be examined/improved
 Statistics, Purity, Interaction in parent channel (ΣΛ, ΣΣ, ΞΛ, ..)

Stay tuned !

Thank you !

AA potential

fss2 Phase shift equivalent potential

fss2

•
$$a_0 = -0.82 \text{ fm}, r_{eff} = 4.1 \text{ fm}$$

Nagara fit E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, PRC66('02)024007.

a₀= - 0.575 fm,
$$r_{eff}$$
= 6.45 fm

Y. Fujiwara, Y. Suzuki, C. Nakamoto, Prog.Part.Nucl.Phys. 58 (2007) 439-520

Ohnishi @ WPCF 2011, Sep.20-24, 2011, Tokyo, Japan