Lambda-Lambda Correlation and Interaction from Heavy Ion Collisions

Akira Ohnishi¹, Takenori Furumoto², Kenji Morita¹ 1. YITP, Kyoto Univ., 2. Nishina Center, RIKEN

- Introduction: Where is "H" ?
- ΛΛ correlation in heavy-ion collisions
- **Summary**

SNP12 - International Workshop on Strangeness Nuclear Physics 2012 Aug.27-29, 2012, Osaka EC Univ., Neyanaga, Japan

AO, Furumoto, Morita, in prep.

Where is the S=-2 dibaryon (uuddss) "H"?

Jaffe ('77)

- Deeply bound H ?
 - Strong Attraction from Color Mag. Int. \rightarrow 80 MeV below $\Lambda\Lambda$
- Nagara event ⁶_{ΛΛ}He *Takahashi et al. ('01)*
 - No deeply bound "H", Weakly Att. ΛΛ int.
 - Why ? Repulsive Instanton Induced Int. Oka, Takeuchi ('91)
- Resonance or Bound "H" ?
 - 2 σ "bump" at E_{ΛΛ} ~ 15 MeV
 Imai & Ahn; Yoon et al.(KEK-E522) ('07)
 - bound H at large ud quark masses Inoue's talk; HAL QCD & NPLQCD ('11)

"H" and AA interaction = Long standing AND Current Subject. \rightarrow Let's consider to measure them in Heavy Ion Collisions !

*Λ*Λ correlation from (*K*⁻,*K*⁺ΛΛ) reaction

Enhancement at ~ 2 M(Λ)+ 10 MeV, CL=2 σ

AA correlation in HIC

- Merit of HIC to measure ΛΛ correlation
 - Source is "Simple and Clean" !
 T, μ, flow, size, ... are well-analyzed.
 - Nearly Stat. prod.
 → Many exotics will be produced.
 Cho et al.(ExHIC Collab.) ('11)

AA correlation in HIC

Real Data at RHIC are measured, and Enhancement from Fermi correlation is clearly seen !

Can we constrain AA interaction from RHIC data ? Does H exist as a bound state or a resonance ?

AA correlation in HIC and AA interaction

Two particle correlation from chaotic source

c.f. Bauer, Gelbke, Pratt, Annu. Rev. Nucl. Part. Sci. 42('92)77.

$$C_{\Lambda\Lambda}(q) = \frac{\int dx_1 dx_2 S(x_1, p+q) S(x_2, p-q) |\psi^{(-)}(x_{12}, q)|^2}{\int dx_1 dx_2 S(x_1, p+q) S(x_2, p-q)}$$

$$\simeq 1 - \frac{1}{2} \exp(-4q^2 R^2) + \frac{1}{2} \int dr S_{12}(r) (|\chi_0(r)|^2 - |j_0(qr)|^2)$$

 $(\chi_0 : \text{s-wave wave func.}, S_{12}(x) = (2R\sqrt{\pi})^{-3} \exp(-r^2/4R^2))$

Baryon Source size R = (2-4.5) fm

Smaller than π , K source.

AA interaction

- **Type of ΛΛ interactoin**
 - Meson exchange models: Nijmegen model D, F, Soft Core (89, 97) Nagels, Rijken, de Swart ('77, '79), Maessen, Rijken, de Swart ('89), Rijken, Stoks, Yamamoto ('99)
 - Quark cluster model interaction: fss2 Fujiwara, Fujita, Kohno, Nakamoto, Suzuki ('00)
 - Phenomenological model: Ehime
- Two (or three) range gaussian fit results are used in the analysis.

How can we constrain AA interaction from HIC data ?

C(q) at large $q \rightarrow R$, C(q) at small $q \rightarrow$ model par. dep.

YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

How can we constrain AA interaction from HIC data ?

C(q) at large $q \rightarrow R$, C(q) at small $q \rightarrow$ model par. dep.

Effects of Other Channels

- **Feed from other particles would modify** $\Lambda\Lambda$ corr. (E.g. $\Lambda \rightarrow p \pi^{-}$ in pp corr., $\Sigma^{0} \rightarrow \Lambda + \gamma$ in $\Lambda\Lambda$ corr.)
 - $Y(\Sigma^0) \sim 0.6 Y (\Lambda)$ (Stat. model) $\rightarrow 0.39 x (C(q)-1)$
 - 10 % corr. in $\Lambda\Sigma$, $\Sigma\Sigma$ channel \rightarrow 5 % in C(q)

Source size R ~ 1.7 fm

Effects of Other Channels

- **Feed from other particles would modify** $\Lambda\Lambda$ corr. (E.g. $\Lambda \rightarrow p \pi^{-}$ in pp corr., $\Sigma^{0} \rightarrow \Lambda + \gamma$ in $\Lambda\Lambda$ corr.)
 - $Y(\Sigma^0) \sim 0.6 Y (\Lambda)$ (Stat. model) $\rightarrow 0.39 x (C(q)-1)$
 - 10 % corr. in $\Lambda\Sigma$, $\Sigma\Sigma$ channel \rightarrow 5 % in C(q)

Ohnishi @ SNP 2012, Aug.27-29, 2012, OECU, Neyagawa, Japan 11

Preferred AA Interaction

STAR data choose some of the $\Lambda\Lambda$ **interaction** $\rightarrow 1/a_0 < -0.8 \text{ fm}^{-1}$ (-1.2 fm < $a_0 < 0$), $r_{eff} > 3$ fm seems to be preferred.

Ohnishi @ SNP 2012, Aug.27-29, 2012, OECU, Neyagawa, Japan 12

Flow Effects

- **Too small source size** ~ 1.7 fm with Σ^0 feed down effects ?
- Flow effects make the "apparent" size smaller.
 - Relative momentum is enhanced by the flow. \rightarrow Actual size ~ (3-4) fm (guess)

Morita

Summary

- **We studied ΛΛ correlation in heavy-ion collisions at RHIC.**
 - Recent STAR (preliminary) data clearly show enhanced ΛΛ correlation compared to the free fermion correlation N.Shah, H.Huan et al. (STAR Collab.), Acta Phys. Pol. Suppl. 5 ('12) 593 [arXiv:1112.0590].
- **Preferred** $\Lambda\Lambda$ interactions have $1/a_0 < -0.8$ fm⁻¹, $r_{eff} > 3$ fm.
 - Weakly attractive. Consistent with Nagara event (a₀=-(0.7-1.3) fm)
 E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto,
 PRC66('02)024007; A. M. Gasparyan et al. PRC85('12)015204; A. Gal.
 - Effects other than $\Lambda \Lambda$ final state interaction.
 - Σ^0 decay effects are well simulated by multiplying 0.39 to (C-1), if there is no strong correlation in $\Lambda\Sigma$ channel.
 - ◆ Coupled channel effects with ΞN should be considered with care.
 - Apparent source size (w/o flow effects) is estimated to be ~ 1.7 fm. With flow effects, real source size would be larger (~ (3-4) fm ?).
- Existence of resonance "H" requires higher statistics.
 Other YY (and hh) correlations would be measurable in HIC.
 Y TP

Thank you !

Nagara event

⁶He hypernuclei

Takahashi et al., PRL87('01)212502 (KEK-E373 experiment) Lambpha $m({}^{6}_{\Lambda\Lambda}He) = 5951.82 \pm 0.54 MeV$

 $\begin{array}{l} B_{\rm AA} = 7.25 \pm 0.19^{+0.18}_{-0.11} {\rm MeV} \\ \Delta B_{\rm AA} = 1.01 \pm 0.20^{+0.18}_{-0.11} {\rm MeV} \\ ({\rm assumed} \ B_{\rm E}^- = 0.13 \ {\rm MeV}) \end{array}$

 \rightarrow B_{AA}= 6.91 MeV (PDG modified(updated) Ξ^{-} mass)

$$\overline{Z}^{-} + {}^{12}C \longrightarrow {}^{6}_{\Lambda\Lambda}He + {}^{4}He + t$$
$${}^{6}_{\Lambda\Lambda}He \longrightarrow {}^{5}_{\Lambda}He + p + \pi^{-}$$

Lattice QCD predicts bound "H"

"H" bounds with heavy π (M_{π} > 400 MeV)

IKAWA INSTITUTE FOR

NPLQCD Collab., PRL 106 (2011) 162001; HAL QCD Collab., PRL 106 (2011) 162002

Exotics from Heavy-Ion Collisions

Cho,Furumoto,Hyodo,Jido, Ko, Lee,Nielsen,AO,Sekihara,Yasui,Yazaki (ExHIC Collab.), PRL('11)212001; arXiv:t:1107.1302

Previous Work (before RHIC & Nagara)

- Hadronic transport (JAM)
 + Two Range Gaussian V_{AA}
 - w/ bound state \rightarrow w.f. node suppresses C(q)

AO, Hirata, Nara, Shinmura, Akaishi, NPA670('00)297c [arXiv:nucl-th/9903021]; SNP2000 proc. p175. JAM: Nara,Otuka, AO, Niita, Chiba, PRC61 ('00), 024901.

STAR data

Lambda-Lambda Interaction and Lambda-Lambda Correlation at RHIC

Coupling Effects

- **Coupled channels effects with ΞN channel is considered.**
 - Coupling with \(\medsilon\) Channel suppresses C(q) at low q. (~ Imag. pot.)
 - Unreasonably large coupling would meaningfully modify C(q).

AA Correlation in (K-,K+) Reaction

AA Correlation in (K-,K+) Reaction (1)

- K⁺ production mechanism
 - QF E production
 - Heavy meson production and Decay *Gobbi, Dover, Gal, PRC50 (1994) 1594.*
 - Two step procecces Nara, AO, Harada, Engel, NPA614 (1997) 433

QF Ξ Prod.

AA Correlation in (K-,K+) Reaction (2)

d²σ/dΩ/dp_k (μ

- Λ production mechanism
 - Cascade procecces
 - Evaporation from hyper compound nuclei

AO, Hirata, Nara, Shinmura, Akaishi, NPA670(2000), 297c

AO, Hirata, Nara, Shinmura, Akaishi, NPA691(2001), 242c

INSTITUTE FOR Incal Physics VITP Kyoto

AA Invariant Mass Spectrum

Fate of the prediction

- Conjecture in 2000 Suppressed ΛΛ correlation may suggest the existence of a bound H
 - Bound H → Node in scattering ΛΛ wf → suppressed correlation AO, Hirata, Nara, Shinmura, Akaishi, NPA670('00)297c [arXiv:nucl-th/9903021]; SNP2000 proc. p175.
 - When the source (homogeneity) size is small, we find a dip with/without bound state.

Source size dependence

- Larger size → Smaller Q region
- No dip structure for larger size.
 (Anti-symmetrization effects > Interaction effects)
 Sensitive only to the scattering length.

$$C(Q \to 0) \simeq \frac{1}{2} - \frac{2}{\sqrt{\pi}} \frac{a_0}{R} + \left(\frac{a_0}{R}\right)^2$$

AA potential

fss2

fss2 Phase shift equivalent potential

•
$$a_0 = -0.82 \text{ fm}, r_{eff} = 4.1 \text{ fm}$$

Nagara fit E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, PRC66('02)024007.

•
$$a_0 = -0.575 \text{ fm}, r_{eff} = 6.45 \text{ fm}$$

Y. Fujiwara, Y. Suzuki, C. Nakamoto, Prog.Part.Nucl.Phys. 58 (2007) 439-520

Toward AA correlation at RHIC: Source Size

- Source size : R = (2-4.5) fm
 - Smaller than last collision point dist. results in hadron cascade (JAM)
 Interaction in the early stage at RHIC
 - Smaller than π , K homogeneity length \rightarrow Further smaller for Λ ?

Toward A A correlation at RHIC: AA interaction

- ΛΛ interaction
 - After Nagara, "plausible" $\Lambda\Lambda$ interaction becomes weaker. Bond energy $\Delta B_{\Lambda\Lambda}$ =0.7 MeV (old guess=(3-6) MeV)
 - fss2 (quark model interaction): No bound state
 Y. Fujiwara, M. Kohno, C. Nakamoto, Y. Suzuki, PRC64('01)054001 Bond energy ΔB_{ΛΛ}= (1.2-1.9) MeV (depending on ΛN int.)
 - Nijmegen model D (boson exch., Rc=0.46 fm): with bound state M.M. Nagels, T.A. Rijken, J.J. de Swart, PRD15('77)2547
 B.E.(H) ~ 1.6 MeV
- **Resonance "H" btw** $\Lambda\Lambda$ Ξ N threshold \rightarrow Couple channel calc. is required
 - One range gaussian coupling potential is assumed.
 - EN potential (diagonal) effects on C(q) is almost negligible.

Memo

- **a** Lattice $\Lambda\Lambda$ int. $a_0 \sim 3$ fm
- Stat. model: $N_A \sim 29.8$, $N_H \sim 0.013$ (dN/dY)

