Explicit three-body couplings in RMF and its effects on symmetry energy

Akira Ohnishi^a, Kohsuke Tsubakihara^b, Toru Harada^b

a.YITP, Kyoto University b. Osaka Electro-Communication University

> 3rd International Symposium on Nuclear Symmetry Energy

Massive Neutron Star Puzzle

- PSR J1614-2230 (NS-WD binary), M=1.97 ± 0.04 Msun Demorest et al., Nature 467 (2010) 1081.
- Something is wrong $! \rightarrow$ Massive Neutron Star Puzzle
 - Hypernuclear data suggest hyperons should appear in NS.
 - EOS with hyperons cannot support 2 Msun NS.
- Possible solutions
 - Modify YN interaction
 S. Weissenborn, I. Sagert, et al., ApJ 740 (2011) L14.
 - Transition to quark matter Vidana; Masuda, Hatsuda, Takatsuka.
 - Three-body force
 S. Nishizaki, T. Takatsuka,
 Y. Yamamoto, PTP108('02)703;
 K.Tsubakihara, AO, arXiv:1211.7208.

Symmetry Energy

- NuSym11 results S₀ = 31-34 MeV, L = 50-110 MeV http://www.smith.edu/nusym11
- Symmetry energy in simple RMF: Esym(ρ_B) $\propto \rho_B \rightarrow L \sim 3 S_0$ \rightarrow Asy Stiff EOS
- Why ?
 - Symmetry energy is dominated by ρ meson.

$$U_{\rm sym} = g_{\rho N} R = \frac{g_{\rho N}}{m_{\rho}^2} (\rho_n - \rho_p)$$

→ We need to include higher order terms or density dep. o coupling.

M. B. Tsang et al., Phys. Rev. C 86 (2012) 015803.

Three-body coupling in RMF and Sym. E.

- We discuss three-body coupling in RMF.
 - Towards a consistent understanding of Neutron Star, Hypernuclei, Symmetry Energy, RMF is a useful tool.
 - We need to introduce non-linear terms or density dependent coupling in isovector channels in order to control Esym(ρ).
 - Truncation scheme is necessary to include higher order terms.
- By using the RMF with three-body coupling, we examine Esym (ρ_B) and neutron star mass-radius (M-R) relation.

RMF with non-linear terms

" "Linear" RMF = $\sigma \omega$ model + ρ meson

$$L_{\sigma\omega\rho} = \psi_B (i \gamma^{\mu} \partial_{\mu} - M + g_{\sigma B} \sigma - g_{\omega B} \gamma^{\mu} \omega_{\mu} - g_{\rho B} \gamma^{\mu} \tau_a R^a_{\mu}) \psi_B$$

+ $\frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma} \sigma^2 - \frac{1}{4} \omega^{\mu\nu} \omega_{\mu\nu} + \frac{1}{2} \omega^{\mu} \omega_{\mu} - \frac{1}{4} R^{\mu\nu}_a R^a_{\mu\nu} + \frac{1}{2} R^{\mu}_a R^a_{\mu}$

Renormalizable higher order terms terms (σ^3 , σ^4 , ω^4)

- Reasonable compressibility, density dependence of vector potential. NL1, NL3, TM1, ...
- Further terms

- → *RMF* an effective theory (Covariant DensityFunctional)
 - Vertex in RMF appears from loop diagrams, and to be treated in the tree (mean field) level.
 - Any term satisfying required symmetry is allowed, and we need a good truncation scheme.

 \rightarrow Furnstahl-Serot-Tang (FST) truncation scheme.

FST truncation

Naive dimensional analysis (NDA) and naturalness

Manohar, Georgi ('84)

The vertex is called "natural" if C ~ 1.

$$L_{\rm int} \sim (f_{\pi} \Lambda)^2 \sum_{l,m,n,p} \frac{C_{lmnp}}{m! \, n! \, p!} \left(\frac{\overline{\psi} \, \Gamma \, \psi}{f_{\pi}^2 \Lambda} \right)^l \left(\frac{\sigma}{f_{\pi}} \right)^m \left(\frac{\omega}{f_{\pi}} \right)^n \left(\frac{R}{f_{\pi}} \right)^p$$

 \rightarrow Consistent with the idea that the vertex is generated by loop diagrams under the assumption that the QCD coupling is small.

FST truncation

R. J. Furnstahl, B. D. Serot, H. B. Tang, NPA615 ('97)441. At a given density, we can truncate the Lagrangian by the index n = B/2 + M + D(B: baryon field, M: Non NG boson,

D: derivatives)

Naturalness $\rightarrow V \sim \rho^n/n!$

 \rightarrow small for large n

n=2 and n=3 terms in RMF

• n=B/2+M+D=2 RMF model (+ effective pot.) $\rightarrow 2$ -body interaction (and rel. 3-body corr.)

• n=3 model \rightarrow 3-body coupling

Bmm terms are ignored in FST paper (field redefinitions).

RMF Lagrangian with n=3 coupling terms

$$L = L_{\text{free}}(\bar{B}, B, \sigma, \omega, \rho, \zeta, \phi) - \bar{B}(S_{B} + \gamma_{\mu}V_{B}^{\mu})B - V_{M}$$

$$S_{N} = -g_{\sigma N}\sigma + \left[g_{\sigma \sigma N}\sigma^{2} + g_{\omega \omega N}\omega^{2} + g_{\rho \rho N}R^{2} + g_{\omega \rho N}\omega_{\mu}R^{\mu}\right]/f_{\pi}$$

$$V_{N} = g_{\omega N}\omega + g_{\rho N}R - \left[g_{\sigma \omega N}\sigma\omega + g_{\sigma \rho N}\sigma R\right]/f_{\pi}$$

$$N_{M} = V_{\sigma \zeta} - \frac{1}{4}c_{\omega}(\omega_{\mu}\omega^{\mu})^{2} + \frac{1}{2}c_{\sigma \omega}f_{\pi}\sigma\omega^{2} + \frac{1}{2}c_{\sigma \rho}f_{\pi}\sigma R^{2}$$

$$(R = \tau_{a}R_{a}^{\mu} \text{ represents } \rho \text{ meson})$$

$$(R = \tau_{a}R_{a}^{\mu} \text{ represents } \rho \text{ meson})$$

$$N_{0}, \rho$$

$$M_{0}, \rho$$

$$N_{0}, \rho$$

$$M_{1} = 0 2 0 g\omega\omega$$

$$0 1 2 0 c\sigma\omega$$

$$1 1 0 1 g\sigma\rho$$

$$1 0 1 1 g\omega\rho$$

$$1 0 1 1 g\omega\rho$$

$$1 0 2 c\sigma\rho$$

$$2,3 i j k \text{ Not yet}$$

Neutron Star Matter

YUKAWA INSTITUTE FOR

How to fix parameters (in nuclear matter)

- Vacuum part: Logarithmic σ and ζ potential *Tsubakihara*, AO ('08), Tsubakihara et al.('10)
 - Stability against variation of σ and ζ fields.
 (Polynomial σ potential is unstable at large values of σ).
- Symmetric matter
 - Adjustable parameters: g_{ω} , c_{ω} , $g_{\sigma\sigma}$, $g_{\sigma\omega}$, $c_{\sigma\omega}$
 - Fit saturation point, Simulate vector potential in RBHF, Require M_N=0 at σ=f_π
 - \rightarrow 1 parameters are left free, and two sets are prepared.
- Isovector (IV) part
 - Adjustable parameters: g_{ρ} , $g_{\sigma\rho}$, $g_{\omega\rho}$, $g_{\rho\rho}$, $c_{\sigma\rho}$
 - For a given set of (g_ρ, g_{ωρ}, c_{σρ}), S₀ and L values are fitted via g_ρ and g_{ρρ} (not yet complete)
- We adopt those sets which fit BEs of Sn and Pb isotopes

EOS, Symmetry Energy, and Neutron Star M-R in RMF with Three-Body Coupling

Results (1): Symmetric matter

Symmetric nuclear matter EoS

Results(2): Symmetry energy

Symmetry energy w or w/o n=3 ρ coupling

Results (3): NS-MR

M-R curve on TBC parameter sets

 Symmetry energy: controllable by introducing IV type n=3 couplings (TBC5: S₀ ~ 41.5MeV >> 35MeV, L ~ 120MeV >>50MeV)
 Large modification to the M-R relation; not to maximum mass of NS

Results (4): (S_0, L) in M-R curves

Effects of S_n and L to calculated NS mass

Results (5): Neutron skin in Sn

Summary

- Massive neutron star puzzle and symmetry energy require improvement of RMF.
 - EOS at high density should be stiff enough even with hyperons.
 - Devistion of Esym($\rho_{\rm B}$) from $\propto \rho_{\rm B}$ needs other isovector terms.
- RMF with Three-Body Coupling (TBC) would provide a possible solution of the above two problems.
 - The massive NS can be supported in EOS with hyperons, when TBC is introduced and YN interaction is moderately stiffened. *Tsubakihara, AO, arXiv:1211.7208 (HYP XI proc.)*
 - We can respect NuSYM 11 results of Esym in TBC-RMF. *Tsubakihara, Harada, AO, in preparation.*
 - Other term such as ω²ρ² (n=4) terms may be also useful to improve density dependence of Esym. *I. Bednarek et al., arXiv:1111.6942.*
- **S**₀ and L effects on NS radius and skin thickness are examined.

Thanks for your attention !

ICNT 2013 and NuSYM 2013 is supported in part by the Grant-in-Aid for Innovative Area on "Nuclear matter in neutron stars investigated by experiments and astronomical observations", 2012-2016 from MEXT.

Joint project between experiments, observations, theories

NS mass with Hyperons in TBC

Tsubakihara, AO, arXiv:1211.7208 (HYP XI proc.)

Side Flow at AGS Energies

- Relativistic BUU (RBUU) model: K ~ 300 MeV (Sahu, Cassing, Mosel, AO, Nucl. Phys. A672 (2000), 376.)
- Boltzmann Equation Model (BEM): K=167~210 MeV (P. Danielewicz, R. Lacey, W.G. Lynch, Science 298(2002), 1592.)

Elliptic Flow at SIS-AGS-SPS Energies

Elliptic Flow at GSI, AGS and SPS Energies

- JAM-MF with p dep. MF explains proton v2 at 1-158 A GeV (from SIS to SPS energies)
- **Hydro+JAM Hybrid model explains v₂ at RHIC.**

