Phase diagram and a sign problem in lattice QCD at strong coupling

A. Ohnishi (YITP)

in collaboration with

T.Z.Nakano (YITP/Kyoto U.), T. Ichihara (Kyoto U.)

- Introduction
 - Finite density QCD matter: Why and How
- Phase diagram in strong coupling lattice QCD
 - Strong coupling limit, finite coupling effects, fluctuations

Summary

T. Z. Nakano, K. Miura, AO, PRD83(2011),016014 AO, T. Ichihara, T.Z. Nakano, PoS Lattice2012 (2012), 088 T. Ichihara, T. Z. Nakano, AO, PoS Lattice2013 (2013), to appear

Do you know Yukawa Institute ?

- Yukawa Institute for Theoretical Physics, Kyoto University
 - Founded in 1953 (We celebrated 60 year birthday of YITP in Sep.), to memorize Yukawa's Nobel prize (first winner in Japan).
 - Domestic & International Collaboration program 20-30 domestic workshops, ~ 10 international workshops, ~ 1000(?) domestic visitors, 600-700 visitors from abroad
 - Su Houng was the visiting professor in YITP in 2010.

0호머구 안동

 -4 3.75	the second second	6	
アイスランド 1 アイルランド 1 イギリス 50 イタリア 30 オーストリア 5 オランダ 16 ギリシャ 4 スイス 9 スペイン 12 ドイツ 50 フランス 41 ベルギー 3 デンマーク 1 フィンランド 3 エジプト 1 南アフリカ 1	エストニア 2 クロアチア 1 スロパキア 2 スロパキア 2 スロパキア 3 チェコ 6 ボーランド 4 ロシア 16 アラブ 1 韓国 インド アラブ 1 韓国 イスラエル 7 シンガボ イラン 7 台湾 トルコ 1 中国 オーストラリア 7 ニュージーランド 2	カナ 12 106 -ル 2 43 29 合計 641人	ダ 12 カ 142 クロー 1 アルゼンテン 1 コロンビア 2 チリ 3 プラジル 1

- 長野 - 宇都宮

Ohnishi @ Yonsei U. Colloquium, Nov. 13, 2013. 2

Hierarchy of Matter

 \rightarrow Main obstacle in describing our world from SM.

3

Quantum Chromodynamics (QCD)

QCD

- Fundamental theory of strong interactions
- Non-Abelian gauge thoery (cf. QED)
- Asymptotic freedom at high energies (g → 0 @ large Q), Strong coupling at low energies

Lagrangian $L = \overline{q} \left(i \gamma^{\mu} D_{\mu} - m \right) q - \frac{1}{2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu}$ $D_{\mu} = \partial_{\mu} + i g A_{\mu}$ (Covariant derivative) $F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - i g [A_{\mu}, A_{\nu}] = \frac{-i}{\sigma} [D_{\mu}, D_{\nu}] \quad \text{(Field strength)}$ $A_{\mu} = A^{a}_{\mu}t^{a} \quad (t^{a} = \mathrm{SU}(3) \text{ generator , } [t^{a}, t^{b}] = i f_{abc}t^{c}, \operatorname{tr}(t^{a}t^{b}) = \frac{1}{2}\delta_{ab})$ Gauge transformation $q(x) \rightarrow V(x)q(x), \quad gA_{\mu}(x) \rightarrow V(x)(gA_{\mu}(x)-i\partial_{\mu})V^{+}(x)$ $F_{\mu\nu}(x) \rightarrow V(x) F_{\mu\nu} V^{+}(x), \quad D_{\mu}(x) \rightarrow V(x) D_{\mu}(x) V^{+}(x)$ $TP \longrightarrow P$ Appendix

4

QCD Phase Diagram

QCD phase diagram (Exp. & Theor. Studies)

QCD phase transition is not only an academic problem, but also a subject which would be measured in HIC or Compact Stars

AO, PTPS 193('12)1

How can we investigate QCD phase diagram ?

 Non-pert. & ab initio approach
 = Monte-Carlo simulation of lattice QCD but lattice QCD at finite μ has the sign problem.

Sign Problem

Monte-Carlo integral of oscillating function

$$Z = \int dx \exp(-x^2 + 2iax) = \sqrt{\pi} \exp(-a^2)$$
$$\langle O \rangle = \frac{1}{Z} \int dx O(x) e^{-x^2 + 2iax}$$

Easy problem for human is not necessarily easy for computers.

Sign Problem (cont.)

- Generic problem in quantum many-body problems
 - Example: Euclid action of interacting Fermions

$$S = \sum_{x, y} \overline{\psi}_x D_{x, y} \psi_y + g \sum_x (\overline{\psi} \psi)_x (\overline{\psi} \psi)_x$$

$$\exp(-g M_x M_x) = \int d\sigma_x \exp(-g\sigma_x^2 - 2ig\sigma_x M_x) \quad (M_x = (\bar{\psi}\psi)_x)$$
$$Z = \int D[\psi, \bar{\psi}, \sigma] \exp\left[-\bar{\psi}(D + 2ig\sigma)\psi - g\sum_x \sigma_x^2\right]$$
$$= \int D[\sigma] \operatorname{Det}(D + 2ig\sigma) \exp\left[-g\sum_x \sigma_x^2\right]$$

We frequently encounter complex Fermion matrix which leads to complex weight in MC integral. E.g. Solving 2-dim Hubbard model is still problematic.

Ohnishi @ Yonsei U. Colloquium, Nov. 13, 2013. 9

g

Partition function & Euclidean Action

Partition function

$$Z = \sum_{n} \exp(-E_{n}/T) = \sum_{n} \langle n | \exp[-\hat{H}/T] | n \rangle$$

$$= \sum_{n} \langle n | \exp[-i\hat{H}(t_{f}-t_{i})] | n \rangle_{t_{f}-t_{i}=-i/T} = \int D \phi \exp(-S_{E}[\phi])$$

$$S_{E}[\phi] = \int_{0}^{\beta} d\tau d^{3}x L_{E}(\phi, \partial_{i}\phi, \partial_{\tau}\phi) |_{\phi(x,\beta)=\phi(x,0)}$$

$$L_{E}(\phi, \partial_{i}\phi, \partial_{\tau}\phi) = -L(\phi, \partial_{i}\phi, i\partial_{\tau}\phi)$$

$$t = -i\tau, \quad \partial_{\tau} = -i\partial_{t}, \beta = 1/T$$

$$iS = i \int_{0}^{-i\beta} dt \int d^{3}x L = \int_{0}^{\beta} d\tau d^{3}x L = -\int_{0}^{\beta} d\tau d^{3}x L_{E}$$

- Partition function = Sum of imaginary time evolved amplitudes
- Euclidean Action: Example

$$L = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^{2} \phi^{2} - U(\phi) \longrightarrow L_{E} = \frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi + \frac{1}{2} m^{2} \phi^{2} + U(\phi)$$

How can we investigate QCD phase diagram ?

- Non-pert. & ab initio approach
 = Monte-Carlo simulation of lattice QCD but lattice QCD at finite μ has the sign problem.
- Effective model and/or Approximations are necessary.
 - Effective models:
 - Nambu-Jona-Lasinio model,
 - Polyakov loop extended NJL model, ...
 - but model dependence is large.
 - Approximate methods:

Taylor expansion in μ/T, Imag. μ, Canonical ensemble, Re-weighting, Fugacity expansion, Histogram method, Complex Langevin approach, Strong coupling lattice QCD

Strong Coupling Lattice QCD

Miura, Nakano, AO, Kawamoto ('09)

Nakano, Miura, AO ('10)

How can we investigate QCD phase diagram ?

- Non-pert. & ab initio approach
 = Monte-Carlo simulation of lattice QCD but lattice QCD at finite μ has the sign problem.
- Effective model and/or Approximations are necessary.
 - Effective models:
 - Nambu-Jona-Lasinio model,
 - Polyakov loop extended NJL model, ...
 - but model dependence is large.
 - Approximate methods:

Taylor expansion in μ/T, Imag. μ , Canonical ensemble, Re-weighting, Fugacity expansion, Histogram method, Complex Langevin approach, Strong coupling lattice QCD

We discuss the QCD phase diagram in strong coupling lattice QCD (SC-LQCD), and examine how the sign problem can be weakened.

Disclaimer: Lattice Unit (a=1), Staggered Fermion (Nf=4 in the cont. limit),

Lattice QCD action

- **Gluon field** \rightarrow Link variables $U_{\mu}(x) \simeq \exp(i g A_{\mu})$
- **Gluon action** \rightarrow **Plaquette action**

$$S_{G} = \frac{2N_{c}}{g^{2}} \sum_{plaq.} \left[1 - \frac{1}{N_{c}} \operatorname{Re} \operatorname{tr} U_{\mu\nu}(n) \right] \qquad U_{\nu}^{+}(n) \left[\frac{1/g^{2}}{N_{\nu}} \frac{n + \hat{\mu} + \hat{\nu}}{U_{\nu}(n + \hat{\mu})} \right]$$

 $n + \hat{v} \quad U_{\mu}^{+}(n + v)$

 $\mathbf{P}_{\mathbf{T}}^{\chi} \mathbf{P}_{\mathbf{T}^{+}}$

• Loop \rightarrow surface integral of "rotation" $F_{\mu\nu}$ in the U(1) case.

Quark kinetic term (staggered fermion)

$$S_{F} = \frac{1}{2} \sum_{x} \left[\bar{\chi}_{x} e^{\mu} U_{0,x} \chi_{x+\hat{0}} - \bar{\chi}_{x+\hat{0}} e^{-\mu} U_{0,x}^{+} \chi_{x} \right]$$

$$+ \frac{1}{2} \sum_{x, j} \eta_{j}(x) \left[\bar{\chi}_{x} U_{x, j} \chi_{x+\hat{j}} - \bar{\chi}_{x+\hat{j}} U_{x, j}^{+} \chi_{x} \right] + \sum_{x} m_{0} M_{x}$$

$$= S_{F}^{(t)} + S_{F}^{(s)} + \sum_{x} m_{0} M_{x}$$

$$\underbrace{Ohnishi (a) Yonsei U. Colloquium, Nov. 13, 2013. 15}$$

Quantum Chromodynamics (QCD)

QCD

- Fundamental theory of strong interactions
- Non-Abelian gauge thoery (cf. QED)
- Asymptotic freedom at high energies (g → 0 @ large Q), Strong coupling at low energies

Lagrangian $L = \overline{q} \left(i \gamma^{\mu} D_{\mu} - m \right) q - \frac{1}{2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu}$ $D_{\mu} = \partial_{\mu} + i g A_{\mu}$ (Covariant derivative) $F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - i g [A_{\mu}, A_{\nu}] = \frac{-i}{\sigma} [D_{\mu}, D_{\nu}] \quad \text{(Field strength)}$ $A_{\mu} = A^a_{\mu} t^a \quad (t^a = \mathrm{SU}(3) \text{ generator }, [t^a, t^b] = i f_{abc} t^c, \operatorname{tr}(t^a t^b) = \frac{1}{2} \delta_{ab})$ Gauge transformation $q(x) \rightarrow V(x)q(x), \quad gA_{\mu}(x) \rightarrow V(x)(gA_{\mu}(x)-i\partial_{\mu})V^{+}(x)$ $F_{\mu\nu}(x) \rightarrow V(x) F_{\mu\nu} V^{+}(x), \quad D_{\mu}(x) \rightarrow V(x) D_{\mu}(x) V^{+}(x)$ $TP \rightarrow V(x) F_{\mu\nu} V^{+}(x), \quad D_{\mu}(x) \rightarrow V(x) D_{\mu}(x) V^{+}(x)$ Appendix

Link integral → *Area Law*

One-link integral

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N_{a}} \delta_{ad} \delta_{bc}$$

Wilson loop in pure Yang-Mills theory

$$\langle W(C = L \times N_{\tau}) \rangle = \frac{1}{Z} \int DUW(C) \exp\left[\frac{1}{g^2} \sum_{P} \operatorname{tr}\left(U_{P} + U_{P}^{+}\right)\right]$$
$$= \exp(-V(L)N_{\tau}) \qquad \qquad \mathbf{L}$$

in the strong coupling limit

$$\langle W(C) \rangle = N \left(\frac{1}{g^2 N} \right)^{L N_{\tau}}$$

 $\rightarrow V(L) = L \log(g^2 N)$

Linear potential between heavy-quarks → *Confinement (Wilson, 1974)*

$$= 1/N_{\rm c} g^2$$

Link integral \rightarrow Effective action

- Effective action in the strong coupling limit (SCL)
 - Ignore plaquette action (1/g²)
 - \rightarrow We can integrate each link independently !
 - Integrate out *spatial* link variables of min. quark number diagrams (1/d expansion)

$$S_{\text{eff}} = S_F^{(t)} - \frac{1}{4N_c} \sum_{x, j} M_x M_{x+\hat{j}} + m_0 \sum_x M_x \quad (M_x = \bar{\chi}_x \chi_x)$$

Damgaard, Kawamoto, Shigemoto ('84)

Phase diagram in SC-LQCD (mean field)

- Standard" simple procedure in Fermion many-body problem
 - Bosonize interaction term (Hubbard-Stratonovich transformation)
 - Mean field approximation (constant auxiliary field)
 - Fermion & temporal link integral

Damgaard, Kawamoto, Shigemoto ('84); Faldt, Petersson ('86); Bilic, Karsch, Redlich ('92); Fukushima ('04); Nishida ('04)

Finite Coupling Effects

Effective Action with finite coupling corrections Integral of $exp(-S_G)$ over spatial links with $exp(-S_F)$ weight $\rightarrow S_{eff}$

$$S_{\text{eff}} = S_{\text{SCL}} - \log \langle \exp(-S_G) \rangle = S_{\text{SCL}} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_c$$

 $<S_{G}^{n}>_{c}=$ Cumulant (connected diagram contr.) *c.f. R.Kubo('62*)

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} (V_{x}^{+} - V_{x}^{-}) - \frac{b_{\sigma}}{2d} \sum_{x,j>0} [MM]_{j,x} \qquad SCL \ (Kawamoto-Smit, \ '81)$$

$$+ \frac{1}{2} \frac{\beta_{\tau}}{2d} \sum_{x,j>0} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} - \frac{1}{2} \frac{\beta_{s}}{d(d-1)} \sum_{x,j>0,k>0,k\neq j} [MMMM]_{jk,x} \qquad NLO \ (Faldt-Petersson, \ '86)$$

$$- \frac{\beta_{\tau\tau}}{2d} \sum_{x,j>0} [W^{+}W^{-} + W^{-}W^{+}]_{j,x} - \frac{\beta_{ss}}{4d(d-1)(d-2)} \sum_{\substack{x,j>0,|k|>0,|l|>0\\|k|\neq j,|l|\neq k|}} [MMMM]_{jk,x} [MM]_{j,x+\hat{l}}$$

$$+ \frac{\beta_{\tau s}}{8d(d-1)} \sum_{x,j>0,|k|\neq j} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} \left([MM]_{j,x+\hat{k}} + [MM]_{j,x+\hat{k}+\hat{0}} \right) \qquad NNLO \ (Nakano, Miura, AO, \ '09]$$

Polyakov loop effects in SC-LQCD

Polyakov Loop

$$P = \frac{1}{N_c} \operatorname{tr} L, \quad L = T \exp\left[-i \int_0^\beta dx_4 A_4\right] = T \prod_{\tau=1}^{N_\tau} U_0(\tau, \boldsymbol{x})$$

Order parameter of the deconfinement transition in the heavy quark mass limit.

A.M. Polyakov, PLB72('78),477; L. Susskind, PRD20('79)2610; B. Svetitsky, Phys.Rept.132('86),1.

Interplay between PL and χ cond. is known to be important in effective models

A. Gocksch, M. Ogilvie, PRD31(85)877; K. Fukushima, PLB591('04),277.

Polyakov loop appears in higer-order of $1/g^2$, but definitely affect QCD phase transition.

SC-LQCD with Polyakov Loop Effects at $\mu=0$

T. Z. Nakano, K. Miura, AO, PRD 83 (2011), 016014 [arXiv:1009.1518 [hep-lat]] P-SC-LQCD reproduces $T_c(\mu=0)$ in the strong coupling region $(\beta=2N_c/g^2 \le 4)$

MC data: *SCL* (Karsch et al. (MDP), de Forcrand, Fromm (MDP)), $N_{\tau} = 2$ (de Forcrand, private), $N_{\tau} = 4$ (Gottlieb et al.('87), Fodor-Katz ('02)), $N_{\tau} = 8$ (Gavai et al.('90))

Polyakov loop effects on Tc

- Comparison of Polyakov loop in SC-LQCD and PNJL
 - SC-LQCD: Tc decreases with Polyakov loop (Polyakov loop deconfines hadrons)
 - PNJL: Tc increases with Polyakov loop (Polyakov loop confine quarks)

KAWA INSTITUTE FOI

Beyond the mean field approximation

■ Constant auxiliary field → Fluctuating auxiliary field

$$S_{\text{eff}} = S_F^{(t)} + \sum_{x} m_x M_x + \frac{L^3}{4N_c} \sum_{k,\tau} f(k) \left[|\sigma_{k,\tau}|^2 + |\pi_{k,\tau}|^2 \right]$$
$$m_x = m_0 + \frac{1}{4N_c} \sum_{j} \left((\sigma + i \varepsilon \pi)_{x+\hat{j}} + (\sigma + i \varepsilon \pi)_{x-\hat{j}} \right)$$
$$f(k) = \sum_{j} \cos k_j <, \quad \varepsilon = (-1)^{x_0 + x_1 + x_2 + x_3}$$

- Auxiliary fields can be integrated out using MC technique (Auxiliary Field Monte-Carlo (AFMC) method)
 - Another method: Monomer-Dimer-Polymer simulation Mutter, Karsch ('89), de Forcrand, Fromm ('10), de Forcrand, Unger ('11)
- Bosonization of "repulsive" mode: Extended HS transf.
 → Introducing "*i*" leads to the complex Fermion determinant.
 Miura, Nakano, AO (09), Miura, Nakano, AO, Kawamoto (09)
- Weight cancellation from low momentum modes is small, due to the ε factor.

How serious is the weight cancellation ?

Statistical weight cancellation in AFMC

$$\langle \exp(i\delta) \rangle \equiv \exp(-\Omega \Delta f)$$
 , $\Omega = \text{space-time volume}$

Phase diagram

- AFMC phase diagram
 - Reduction of T_c at μ=0 and enlarged hadron phase at medium T compared with the mean field results.
 - Quantitatively consistent with MDP simulation, if extrapolated to Nτ → ∞
 de Forcrand, Fromm ('09); de Forcrand, Unger ('11)

Ichihara, Nakano, AO, PoS Lattice2013 (2013), to appear

Summary

- QCD to nuclei is the main missing link to describe our world starting from the standard model. The sign problem in Monte-Carlo simulation of lattice QCD.
- Strong coupling lattice QCD is a promising tool in finite density lattice QCD.
 - Strong coupling limit + finite coupling correction + Polyakov loop
 → MC results of Tc is roughly reproduced.
- Sign problem is solved in the strong coupling limit !
 - Two independent methods show the same phase boundary, and the spatial size dependence is small. (Monomer-dimer-polymer simulation, Auxiliary field MC)
- Challenge
 - Finite coupling + Fluctuations (Exact integral), Different type of Fermion, 1/d expansion.

Thank you

Chiral Angle Fixing

