Entropy production in the classical Yang-Mills theory as the coherent state dynamics

Akira Ohnishi (YITP, Kyoto U.) in collaboration with H. Iida, T. Kunihiro (Kyoto), T.T.Takahashi (Gunma CT), A. Schafer (Regensburg), B. Muller (Duke/BNL), A. Yamamoto (Tokyo)

The Approach to Equilibrium in Strongly Interacting Matter April 2-4, 2014, BNL

Based on the works,

- *Towards a Theory of Entropy Production in the Little and Big Bang*, T. Kunihiro, B. Müller, A. Ohnishi, A. Schäfer, Prog. Theor. Phys. 121 ('09), 555 [arXiv:0809.4831].
- *Chaotic behavior in classical Yang-Mills dynamics*, T. Kunihiro, B. Müller, A. Ohnishi, A. Schäfer, T. T. Takahashi, A. Yamamoto, Phys. Rev. D 82 (2010), 114015 [arXiv:1008.1156].
- *Entropy production in classical Yang-Mills theory from Glasma initial conditions*, H. Iida, T. Kunihiro, B. Müller, A. Ohnishi, A. Schäfer, T. T. Takahashi, Phys. Rev. D 88 (2013), 094006 [arXiv:1304.1807].
- H. Iida, T. Kunihiro, A. Ohnishi, T.T. Takahashi, arXiv:1404.xxxx

Thermalization in High-Energy Heavy-Ion Collisions

Time Evolution at RHIC & LHC

Theor. Challenges

- Thermalization under dynamical classical field
- Theoretically interesting and Phenomenologically important. dN/ dη, init. cond. of hydro.

Phen. Challenges

flow, jet, hard probes → hydro., transport coef.,

E-loss, hadron prop., phase diagram, ...

Entropy Production in Heavy-Ion Collisions

We have been working on entropy production in non-equilibrium stage, since the international Molecule-type workshop on "Entropy Production before QGP" (2008.08.01-28)
 (A. Schafer, R. Fries, B. Mueller, M. Strickland, T. Schafer, M. Natsuume, Y. Nara, T. Hirano, K. Fukushima, T. Kunihiro, AO)

Entropy production in Classical Yang-Mills dynamics

Perturbative estimate of thermalization time is longer than expected from hydrodynamics simulations.

→ Classical Yang-Mills field is expected to play a role of entropy prod. Baier, A.Mueller, Schiff, Son ('01); Chatterjee, Srivastava ('09), Heinz, Kolb ('02)

- How does CYM field have entropy ? Chaos & Decoherence !
 - Entropy from chaoticity
 - (Husimi-)Wehrl entropy Kunihiro, B. Müller, AO, Schäfer ('09)

$$S_{Wehrl} = -\int \frac{d^n x d^n p}{(2\pi)^n} H \log H \quad (H = \text{phase space prob. fn.})$$

Entropy production rate = Kolmogorov-Sinaii entropy

B. Muller, Trayanov ('92), Biro, Gong, B. Muller ('94), Bolte, B. Muller ('00). Kunihiro, B. Müller, AO, Schäfer, Takahashi, Yamamoto ('10), Iida, Kunihiro, B.Müller, AO, Schäfer, Takahashi ('13)

Decoherence entropy

B.Muller, Schafer ('03, '06), Fries, B. Muller, Schafer ('09), Iida, Kunihiro, AO, Takahashi ('14)

Classical Statistical simulation

Berges, Scheffler, Sexty ('08), Epelbaum, Gelis ('13)

Contents

We discuss the CYM entropy and its production rate with emphasis on the decoherence entropy

- Introduction
- Entropy production from chaotic nature of CYM
 - Chaoticity, Lyapunov exponent, and Kolmogorov-Sinaii entropy
 - KS entropy from CYM
 T. Kunihiro, B. Müller, AO, A. Schäfer, T.T. Takahashi, A. Yamamoto, PRD82('10),114015
 [arXiv:1008.1156].
 H.Iida, T.Kunihiro, B.Müller, AO, A.Schäfer, T.T.Takahashi, PRD88('13),094006 [arXiv:1304.1807].
- CYM as a coherent state and decoherence entropy
 - Decoherence entropy
 - CYM as a coherent state
 - Decoherence entropy from CYM dynamics
 H.Iida, T.Kunihiro, AO, T.T.Takahashi, arXiv:1404.xxxx (to be submitted soon).
- Summary

Entropy production from chaotic nature of CYM

Chaoticity, Lyapunov exponent, and KS entropy

Entropy in classical dynamics = Wehrl entropy

$$S = -\int d\Gamma H \log H$$

 $(d\Gamma = dx dp = phase space, H = phase space dist. fn., e.g. Husimi fn.)$

Lyapunov exponent and Kolmogorov-Sinaii entropy

$$\delta X_i(t) = \delta X_i(t_0) \exp[\lambda_i(t-t_0)] \quad (X = (x, p)),$$

$$dS/dt = S_{\rm KS} \equiv \sum_{i, \lambda_i > 0} \lambda_i$$

- $\delta X =$ difference of two trajectories from adjacent initial conditions $\lambda =$ initial state sensitivity (Lyapunov exponent, measure of chaoticity)
- When λ > 0, exponentially growing number of phase space cells are visited → phase space dist. fn. becomes smooth after proper coarse graining → entropy production (Kolmogorov-Sinaii entropy)

Evolution of the Wigner Function

- **Liouville theorem** \rightarrow conservation of the phase space volume
 - **Exponential growth in (x+p/\lambda), Exponential narrowing in (x-p/\lambda)**

Ohnishi @ AESIM2014, April 2-4, 2014, BNL 8

Evolution of the Husimi Function

- Coherent state broadening of phase space
 - Minimum width in $(x-p/\lambda) \rightarrow$ phase space dist. func. is smeared !

Classical Yang-Mills dynamics on the lattice

Lattice CYM Hamiltonian in temporal gauge (A₀=0) in the lattice unit

$$H = \frac{1}{2} \sum_{x, a, i} \left[E_i^a(x)^2 + B_i^a(x)^2 \right]$$

$$F_{ij}^a(x) = \partial_i A_j^a(x) - \partial_j A_i^a(x) + \sum_{b, c} f^{abc} A_i^b(x) A_j^c(x) = \varepsilon_{ijk} B_k^a(x)$$

Non-linear & coupling

- Non-compact (A, E) form !
 - Demerit: Gauge invariance is not fully satisfied at finite lattice spacing.
 - Merit: Easy to consider the coherent state, and conformality is manifest.
- Initial conditions (E_i^a(x)=0 is assumed here.)
 - Random initial condition: $A_i^a(x) = random$ in $[-\eta, \eta]$,

magnetic field ~ z direction ($\varepsilon_1 >> \varepsilon_2$), w and w/o fluc.

How to obtain Lyapunov exponents

EOM of $\delta X \rightarrow$ Integral

$$\dot{X} = \begin{pmatrix} \dot{x} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} H_p \\ -H_x \end{pmatrix} \rightarrow \delta \dot{X} = \begin{pmatrix} H_{px} & H_{pp} \\ -H_{xx} & -H_{xp} \end{pmatrix} \delta X \equiv \tilde{H} \delta X$$
$$(H_{px} \equiv \partial^2 H / \partial p \partial x \text{ etc})$$
$$\delta X(t) = T \exp \left(\int_0^t dt \, ' \, \tilde{H}(t \, ') \right) \delta X(t=0) \simeq T \prod_{k=1,N} (1 + \tilde{H} \Delta t) \delta X(t=0)$$
$$= U(0,t) \delta X(t=0)$$

- **Diagonalizing U and the eigen value becomes** λt .
- Matrix size = 3 (xyz) x (N_c^2 -1) x L^3 x 2 (A,E)

Typical Lyapunov spectrum

- Sum of all Lyapunov exponent = 0 (Liouville theorem)
- 1/3 Positive, 1/3 negative, and 1/3 zero (or pure imag.)

KS entropy in CYM from random init. cond.

Kunihiro, Müller, AO, Schäfer, Takahashi, Yamamoto ('10)

- Evolution of distance from adjacent init. cond.
 - Exponential growth of distance → Instability or Chaoticity

$$D_{FF} = \sqrt{\sum_{x} \{\sum_{a,i,j} F^a_{ij}(x)^2 - \sum_{a,i,j} F'^a_{ij}(x)^2\}^2}$$

- Lyapunov exponent distribution
 - Rapid spread of positive LEs and macroscopic # of positive LEs → Chaoticity

KS entropy in CYM from random init. cond.

Kunihiro, Müller, AO, Schäfer, Takahashi, Yamamoto ('10)

- Energy density dependence
 - Larger energy → Larger Lyapunov exp.
 - CYM is conformal $\rightarrow \lambda \propto \epsilon^{1/4}$ ($\epsilon = E/V$)

$$\frac{dS}{dt} = S_{KS} \sim c_{KS} \varepsilon^{1/4} , \quad c_{KS} \sim 2 \quad \text{(Lattice unit)}$$

KS entropy in CYM from glasma-like init. cond.

Instability under strong color-magnetic field

Nielsen, Olesen ('78), Fujii, Itakura ('08), Berges, Scheffler, Schlichting, Sexty ('12)

- No chaotic behavior is observed with sine waves and constant-A w/o fluctuations.
- Small fluctuations activate instability and chaoticity.
- Chaoticity emerges after instability spreads to many modes.

-5

-10

0

50

100

og(DFF) or log(DEE)

D_{EE} and D_{EE}

150

Decoherence Entropy

Muller, Schafer ('03,'06), Fries, Muller, Schafer ('09), Iida, Kunihiro, AO, Takahashi ('14)

Coherent State

$$\hat{a} |\alpha\rangle = \alpha |\alpha\rangle |\alpha\rangle = N \exp(\alpha \hat{a}^{+}) |0\rangle = \exp(-|\alpha|^{2}/2) \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}} |n\rangle$$

- n-quanta states are coherently superposed in a coherent state.
- When this coherence is broken, entropy is generated (decoherence entropy)

$$P_{n} = \frac{|\alpha|^{2n}}{n!} \exp(-|\alpha|^{2}) \quad (\text{Poisson dist.})^{3} \qquad \overline{n} = |\alpha|^{2} \qquad S_{eq} \qquad \overline{n} = |\alpha|^{2} \qquad \overline$$

CYM as a Coherent State

Muller, Schafer ('03,'06), Fries, Muller, Schafer ('09), Iida, Kunihiro, AO, Takahashi ('14)

■ What kind of state does the CYM correspond to ? → Natural guess = Coherent State

$$| \text{CYM} \rangle \simeq \prod_{\boldsymbol{k}, a, i} | \alpha_{\boldsymbol{k}ai} \rangle$$

Decoherence entropy from CYM

$$S_{dec} = -\sum_{\boldsymbol{k}, a, i} \sum_{n} P_{n}(\alpha_{\boldsymbol{k}ai}) \log P_{n}(\alpha_{\boldsymbol{k}ai})$$

$$\alpha_{\boldsymbol{k}ai} = \frac{1}{\sqrt{2\omega_{\boldsymbol{k}}}} \left[\omega_{\boldsymbol{k}} A_{ai}(\boldsymbol{k}, t) + i E_{ai}(\boldsymbol{k}, t) \right], \quad \omega_{\boldsymbol{k}} = \sqrt{\sin^{2} k_{x}} + \sin^{2} k_{y} + \sin^{2} k_{z}$$

- Is the above assignment unique ?
 - Coherent state in each "coherent domain" Fries, Muller, Schafer ('09)
 - Deviation from Poisson dist. with coupled oscillator Glauber ('66), Gelis, Venugopalan ('06)

Initial Condition and Time Evolution

"Glasma-like" init. cond.

MV model (boost inv.)
 + Longitudinal fluctuations

→ Bx,y, Ex,y, Bη, Eη McLerran, Venugopalan ('94), Romatschke, Venugopalan ('06), Fukushima, Gelis ('12)

 Non-expanding geometry is assumed, Substitute Bη and Eη in MV model into Bz and Ez at t=0.

Time-evolution

- Short time behavior of E² does not depend on the fluctuation strength. (and similar to expanding geo. results.) *E.g. Lappi, McLerran ('06)*
- Long-time behavior: Earlier "isotropization" in perp. and long. directions of E².

Iida, Kunihiro, AO, Takahashi ('14)

У ТРР У ТРР У ТРР У ТРР КУ ОБ 2

Initial Condition and Time Evolution

Lappi, McLerran ('06)

'D 📣

Iida, Kunihiro, AO, Takahashi ('14)

Physical Scale

- Rough estimate: $L^2 \sim \pi R_{Au}^2 \rightarrow 1/a = g^2 \mu \sim 0.32 \text{ GeV} (a \sim 0.63 \text{ fm})$
- Thermal energy estimate Kunihiro et al.('10), Muller, Schafer('11)

$$\epsilon_{\text{CYM}} = 2(N_c^2 - 1)\frac{T}{a^3}, \ \epsilon_{\text{SB}} = 2(N_c^2 - 1)\frac{\pi^2}{30}T^4$$

CYM energy density should not exceed Stefan-Boltzmann energy density in equilibrium.

$$\epsilon_{\text{CYM}} < \epsilon_{\text{SB}}$$

 $\rightarrow a > \frac{1}{T} \left(\frac{30}{\pi^2}\right)^{1/3} \sim \frac{1.4}{T}$

This estimate gives a > 0.8 fm (T=350 MeV), a > 0.6 fm (T=500 MeV).

Decoherence Entropy of CYM

- How about the decoherence entropy ?
 - $<\delta E^2 > < E^2 > ~ 0.1$ ($\Delta = 0.05$) and 0.3 ($\Delta = 0.1$)
 - $S_{dec} \sim 2.3 \ (\Delta=0) \text{ and } 33 \ (\Delta=0.05, 0.1)$
 - Entropy from initial state fluc. and chaoticity
 - No long. fluc. results in 2D (pz=0 mode) entropy, while 3D entropy is realized with finite long. fluc. (non-zero Δ).

Ohnishi @ AESIM2014, April 2-4, 2014, BNL 22

Decoherence Entropy Production Rate

- Decoherence entropy growth rate should be compared with KS entropy
 - $dS_{dec}/dt \sim 0.88$ (Δ =0.01), 1.05 (Δ =0.05), 1.36 (Δ =0.1)
 - KS entropy estimate: $S_{KS} \sim c_{KS} \epsilon^{1/4}$, $c_{KS} \sim 2$ (conformal chaotic value)
 - Energy density: $\varepsilon = 0.17$ ($\Delta = 0.01$), 0.18 ($\Delta = 0.05$), 0.21 ($\Delta = 0.1$) $\rightarrow c_{KS} = dS^{dec}/dt/\varepsilon^{1/4} = 1.4$ ($\Delta = 0.01$), 1.6 ($\Delta = 0.05$), 2.0 ($\Delta = 0.1$)

Physical Scale

- Rough estimate: $L^2 \sim \pi R_{Au}^2 \rightarrow 1/a = g^2 \mu \sim 0.32 \text{ GeV} (a \sim 0.63 \text{ fm})$
- Thermal energy estimate Kunihiro et al.('10), Muller, Schafer('11)

$$\epsilon_{\rm CYM} = 2(N_c^2 - 1)\frac{T}{a^3}, \ \epsilon_{\rm SB} = 2(N_c^2 - 1)\frac{\pi^2}{30}T^2$$

CYM energy density should not exceed Stefan-Boltzmann energy density in equilibrium.

$$\varepsilon_{\text{CYM}} < \varepsilon_{\text{SB}}$$

 $\rightarrow a > \frac{1}{T} \left(\frac{30}{\pi^2}\right)^{1/3} \sim \frac{1.4}{T}$

- First 6 fm/c corresponds to lattice time g²μt < 10 !</p>

Summary

- We have evaluated the entropy from classical Yang-Mills field using
 - Kolmogorov-Sinai entropy (as a growth rate),
 - Decoherence entropy.
- Entropy could be produced even before classical Yang-Mills field decays into particles.
 - Suggested scenario: Fluctuation
 - \rightarrow Realization of instability & Spread to many modes \rightarrow Chaoticity
 - Rough estimate of entropy production rate in non-expanding CYM

$$\frac{dS}{dt} = S_{KS} \sim c_{KS} \varepsilon^{1/4} , \quad c_{KS} \sim 2 \quad \text{(Lattice unit)}$$

- Decoherence entropy grows at about the $c_{KS} = (1-2)$ rate, and saturates, and it is sensitive to longitudinal fluctuations.
- For the initial stage entropy, both the time-evolution and the initial entropy value would be important.

Future works

- Decoherence entropy in expanding glasma with realistic fluctuation strength E.g. Epelbaum, Gelis ('13)
- Estimate of decoherence time during CYM evolution and Defining coherent domain in CYM c.f. Fries, Muller, Schafer ('09)
- Coupling to particle DOF
 - Fluctuation in classical statistical simulation ~ particles ?
 - CYM + gluon test particles Dumitru, Nara, Strickland ('07)
 - 2PI formalism of CYM and gluon propagator
 c.f. Nishiyama, AO ('10, w/o CYM), Hatta, Nishiyama ('11), Cassing ('09)

Thank you for your attention !

