Phase diagram at strong coupling

A. Ohnishi (YITP)

in collaboration with T. Ichihara (Kyoto U./YITP), T.Z.Nakano (KKE), K. Miura (Nagoya U.), N. Kawamoto (Hokkaido U.)

ATHIC2014 OSAKA

QCD Phase Diagram

UKAWA INSTITUTE FOR

QCD Phase Diagram in HIC

- Chemical freeze-out line reach the T-axis in 2000 (RHIC started !)
- Hint of CP signal is clearly shown in 2014.

Phase diagram: $2D \rightarrow 3D$

- Heavy-Ion Collisions: (Τ, μ) phase diagram
- Compact Star phenomena: Isospin chem. pot. is necessary
 → (T, μ, δμ) 3D phase diagram

AO, Ueda, Nakano, Ruggieri, Sumiyoshi ('13)

AO, Ueda, Nakano, Ruggieri, Sumiyoshi ('11)

Phase Diagram Evolution with $\beta = 2N_c/g^2$

- Extensive studies exist in the strong coupling limit (staggered, N_f=4), and the sign problem is under control.
- 3D phase structure is related to the nature of CP.

Kawamoto, Miura, AO, Ohnuma ('07)

de Forcrand, Langelage, Philipsen, Unger ('13)

Contents

- Introduction
 - QCD phase diagram under various conditions
- Strong coupling lattice QCD
- Phase diagram in SC-LQCD
 - Strong coupling limit
 - Finite coupling & Polyakov loop effects
 K. Mura, T. Z. Nakano, AO, N. Kawamoto, PRD80(2009), 074034;
 T. Z. Nakano, K. Miura, AO, PRD83(2011),016014.
 K. Miura, T.Z. Nakano, AO, N. Kawamoto (n preo.)

Fluctuations

AO, T. Ichihara, T.Z. Nakano, PoS Lattice2012 (2012), 088; T. Ichihara, T. Z. Nakano, AO, PoS Lattice2013 (2013), 143; T. Ichihara, T. Z. Nakano, AO, arXiv:1401.4647. T. Ichihara, AO, LAT2014 (in prep.)

(Sign problem in SC-LQCD)

Strong Coupling Lattice QCD

Effective action at strong coupling

$$Z = \int \mathcal{D}[\chi, \bar{\chi}, U_0, \bigcup_j] \exp[-S_{\text{LQCD}}(\chi, \bar{\chi}, U_0, U_j)]$$

spatial link integral

$$= \int \mathcal{D}[\chi, \bar{\chi}, U_0 \bigcirc] \exp[-S_{\text{eff}}(\chi, \bar{\chi}, U_0)]$$

Damgaard,Kawamoto,Shigemoto('84), Ichinose('84), Faldt,Petersson('86), Nakano, Miura,AO ('09), Gocksch, Ogilvie ('85), Fukushima ('04), Nakano, Miua, AO ('11)

- Integrate spatial links first.
- Given order in 1/g² and, Leading order in 1/d (d=spatial dim.)
- Temporal Link + Nearest Neighbor Int. + Polyakov loop +

Finite Coupling Effects

Finite coupling corrections

$$S_{\text{eff}} = S_{\text{SCL}} - \log \langle \exp(-S_G) \rangle = S_{\text{SCL}} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_c$$

<S_Gⁿ>_c=Cumulant (connected diagram contr.) *c.f. R.Kubo('62)*

Polyakov loop (Gocksch, Ogilvie ('85), Fukushima ('04) Nakano, Miua, AO ('11))

Monomer-Dimer-Polymer simulation

The partition fn. can be given as the sum of monomer-dimerpolymer (MDP) configuration weight in the strong coupling limit. The sign problem is mild. *Karsch, Mutter ('89)*

$$Z(2 ma, \mu, r) = \sum_{K} w_{K}$$
$$w_{K} = (2 ma)^{N_{M}} r^{2N_{t}} (1/3)^{N_{1}N_{2}} \prod_{X} w(X) \prod_{C} w(C)$$

MDP with worm algorithm is applied to study the phase diagram de Forcrand, Fromm ('10), de Forcrand, Unger ('11)

Mean Field & Auxiliary Field Monte-Carlo

One popular way to handle many-fermion int.
 = Bosonization (Hubbard-Stratonovich transf.)

$$e^{MM} = \int d\sigma e^{-\sigma^2 - 2\sigma M} \quad (M = \bar{\chi}\chi)$$

Nearest neighbor Four-Fermi int. → σ and π (chiral partners) Extended HS transf.

$$\exp\left[\alpha \sum_{x,j} M_x M_{x+\hat{j}}\right] = \int \mathcal{D}[\sigma,\pi] \exp\left[-S_{\text{int}}\right]$$
$$S_{\text{int}} = L^3 N_\tau \alpha \sum_{\substack{k,f(\mathbf{k})>0\\k,f(\mathbf{k})=\sum_j \cos k_j}} f(\mathbf{k})(|\sigma_k|^2 + |\pi_k|^2) + \alpha \sum_{x,\pm j} M_x (\sigma + i\varepsilon\pi)_{x\pm \hat{j}}$$

■ Mean Field & Auxiliary Field MC (after χ and U_0 integral) $Z = \int \mathcal{D}[\sigma, \pi] \exp[-S_{\text{eff}}(\sigma_k, \pi_k)] \simeq \exp[-S_{\text{eff}}(\sigma_k \delta_{k0}, \pi_k)]|_{\text{stat.}}$ AFMC Mean Field approx.

Ohnishi @ ATHIC 2014, Osaka, Aug. 5-8, 2014 11

σ

 $\neg \sigma + i \varepsilon \pi$

SC-LQCD phase diagram evolution in time...

Phase diagram in the strong coupling limit (mean field)

Finite Coupling Effects

Shape of the phase diagram is compressed in T direction with β

 \rightarrow *Improvements in R*= μ_c/T_c !

- MC (R > 1) → SCL (R = (0.3-0.45))
 → NLO/NNLO (R ~ 1)
 → Real World (R~(2-4))
- Critical Point
 - NLO: μ(CP) ~ Const.
 - NNLO: μ(CP) decreases with β consistent with the expected 1st order at μ=0 for N_f=4.

Kronfeld ('07), Pisarski, Wilczek ('84)

• $\mu(CP)/T(CP) \sim 1 \leftrightarrow MC (\mu/T > 1)$ *Ejiri, ('08), Aoki et al.(WHOT,'08), Allton et al., ('03,'05)*

Miura, Nakano, AO, Kawamoto ('09) Nakano, Miura, AO ('09)

Polyakov Loop Effects (µ=0)

- P-SC-LQCD reproduces MC results of $T_c(\mu=0)$ ($\beta=2N_c/g^2 \le 4$) MC data: SCL (Karsch et al. (MDP), de Forcrand, Fromm (MDP)), $N_{\tau}=2$ (de Forcrand, private), $N_{\tau}=4$ (Gottlieb et al.('87), Fodor-Katz ('02)), $N_{\tau}=8$ (Gavai et al.('90))
 - Weiss MF method: Bosonization of Pol. loop action (includes Gaussian fluc. of PL)
 - Haar measure method: PL is replaced with c-number.

Polyakov Loop Effects

- **Polyakov loop effect is significant at \mu=0.**
 - Tc is reduced by 30 % at β=3, and MC results are roughly reproduced.
- Polyakov loop effect may be less significant at finite μ. Miura, Nakano, AO, Kawamoto (in prep.)

Miura, Nakano, AO, Kawamoto ('09)

Miura, Nakano, AO, Kawamoto (in prep.)

Order Parameters in AFMC

AWA INSTITUTE FOI

Fluctuation Effects

Fluctuation & Finite Coupling Effects

- Fluctuation & Finite Coupling effects on Tc are in the same direction.
 - Fluctuation reduces Tc by (10-15) % in AFMC

Summary

- Phase diagrams under various conditions (3D phase diagrams) are important to understand Compact star physics (isospin chem. pot., δ μ),
 - Finite density lattice QCD (coupling, $\beta=2 N_c/g^2$, imag. μ),

Magnetic catalysis/inhibition, and more.

- Strong coupling lattice QCD is a powerful tool to understand finite density QCD at β < (3-4) (1/g² < (0.5-0.66)).</p>
 - At μ=0, finite coupling, Polyakov loop and (chiral field) fluctuation reduces Tc by (30-40) %, (30-40) % and (10-15) % at β ~ 3.
 → consistent with Hybrid MC results.
- CP position is still sensitive to the truncations & method.
 - Do we see CEP or Lifshits pont in BES ?

Thank you

Average Phase Factor

AFMC (1/g²=0, 4³X4 or 8³X8) Average phase factor

4³X4

Average phase factor = Weight cancellation

$$\langle e^{i\theta} \rangle = Z_{\text{phase quenched}} / Z_{\text{full}}$$

AFMC results

Discussion: Comparison with MDP

Free energy difference

 $\langle \exp(i\theta) \rangle \equiv \exp(-\Omega \Delta f)$, $\Omega =$ space-time volume

MDP simulation on anisotropic lattice at finite T and μ de Forcrand, Fromm ('10), de Forcrand, Unger ('11)

- Strong coupling limit.
- Higher-order terms in 1/d expansion
- No sign problem in the continuous time limit (N $\tau \rightarrow \infty$).

Ways to avoid the sign problem

- Complex Langevin simulation with Gauge cooling *Aartz, Bongiovanni, Seiler, Sexty, Stamatescu ('13)*
- Integral on Lefschetz Thimble Fujii, Honda, Kato, Kikukawa, Komatsu, Sano ('13) Aurora Science Collab. ('12)

Phase boundary

 ΔS

- Low µ/T region (would-be second)
 → Chiral susc. peak
- High µ/T region
 (would-be first)
 - → Average eff. action from Wigner/NG init. cond.

c.f. Exchange MC (Hukuyama)

Finite Size Scaling of Chiral Susceptibility

- **Finite size scaling of** χ_{σ} in the V (spatial vol.) $\rightarrow \infty$ limit
 - Crossover: Finite
 - Second order: $\chi_{\sigma} \propto V^{(2-\eta)/3}$, η =0.0380(4) in 3d O(2) spin *Campostrini et al. ('01)*
 - First order: $\chi_{\sigma} \propto V$
- AFMC results : Not First order at low μ/T.

Beyond the mean field approximation

Constant auxiliary field \rightarrow Fluctuating auxiliary field

$$\begin{split} S_{\text{eff}} &= S_F^{(t)} + \sum_{x} m_x M_x + \frac{L^3}{4N_c} \sum_{k,\tau} f(k) \Big[|\sigma_{k,\tau}|^2 + |\pi_{k,\tau}|^2 \Big] \\ m_x &= m_0 + \frac{1}{4N_c} \sum_{j} \left((\sigma + i \varepsilon \pi)_{x+\hat{j}} + (\sigma + i \varepsilon \pi)_{x-\hat{j}} \right) \\ f(k) &= \sum_{j} \cos k_j < , \quad \varepsilon = (-1)^{x_0 + x_1 + x_2 + x_3} \end{split}$$

- Auxiliary Field Monte-Carlo (AFMC) integral
 - Another method: Monomer-Dimer-Polymer simulation Mutter, Karsch ('89), de Forcrand, Fromm ('10), de Forcrand, Unger ('11)
- Bosonization of "repulsive" mode: Extended HS transf.
 → Introducing "*i*" leads to the complex Fermion determinant.
 Miura, Nakano, AO (09), Miura, Nakano, AO, Kawamoto (09)

Strong Coupling Effective Action

Lattice QCD action at strong coupling

$$S_{\text{LQCD}} = \sum_{x} \left[V^{+}(x) - V^{-}(x) \right] + m_0 \sum_{x} M_x$$

$$V^{+}(x) = e^{\mu/\gamma^{2}} \bar{\chi}_{x} U_{x,0} \chi_{x+\hat{0}}, \quad V^{-}(x) = e^{-\mu/\gamma^{2}} \bar{\chi}_{x+\hat{0}} U_{x,0}^{+} \chi_{x}, \quad M_{x} = \bar{\chi}_{x} \chi_{x}$$

Strong Coupling I imit (I O in 1/g2 and 1/d)

 $+\frac{1}{2}\sum \eta_{j}(x) \Big[\bar{\chi}_{x} U_{j,x} \chi_{x+\hat{j}} - \bar{\chi}_{x+\hat{j}} U_{j,x}^{\dagger} \chi_{x} \Big] + S_{G}$

Strong Coupling Limit (LO in 1/g² and 1/d)

$$S_{\text{eff}} = \frac{\gamma}{2} \sum_{x} \left[V^{+}(x) - V^{-}(x) \right] - \frac{1}{4N_{c}} \sum_{x, j} M_{x} M_{x+\hat{j}} + m_{0} \sum_{x} M_{x}$$

Damgaard, Kawamoto, Shigemoto ('84)

- Integrate spatial links first.
- Leading order in 1/g² and 1/d
- Temporal Link + Nearest Neighbor Int.

(d=spatial dim.)

Auxiliary Field Effective Action

■ Fermion det. + U0 integral can be done analytically. → Auxiliary field effective action

$$\begin{split} S_{\text{eff}}^{\text{AF}} &= \sum_{\substack{\boldsymbol{k}\,,\,\tau\,,\,f\left(\boldsymbol{k}\right)>0}} \frac{L^{3}f\left(\boldsymbol{k}\right)}{4N_{c}} \left[\left|\sigma_{\boldsymbol{k}\,,\tau}\right|^{2} + \left|\pi_{\boldsymbol{k}\,,\tau}\right|^{2}\right] \\ &- \sum_{\boldsymbol{x}} \log \left[X_{N}(\boldsymbol{x})^{3} - 2X_{N}(\boldsymbol{x}) + 2\cosh\left(3\mu/T\right)\right] \\ X_{N}(\boldsymbol{x}) &= X_{N}[m(\boldsymbol{x}\,,\tau)] \quad (\text{known func.}) \\ m_{x} &= m_{0} + \frac{1}{4N_{c}} \sum_{j} \left(\left(\sigma + i\,\varepsilon\,\pi\right)_{x+\,\hat{j}} + \left(\sigma + i\,\varepsilon\,\pi\right)_{x-\hat{j}}\right) \end{split}$$

- $X_N = Known function of m(x, \tau)$ For constant m, $X_N = 2 \cosh(N_\tau \operatorname{arcsinh}(m/\gamma))$
- Imag. part from $X_N \rightarrow$ Relatively smaller at large μ/T
- Imag. part from low momentum AF cancels due to it factor.

Chiral Angle Fixing

How can we simulate correct thermodynamic chiral limit using finite volume simulations ?

Ichihara, AO, Nakano ('14)

c.f. rms spin is adopted in spin systems *Kurt, Dieter ('10)*

YUKAWA INSTITUTE FOR

Error estimate by Jack-knife method

HEORETICAL PHYSIC

32

Comparison with Direct Simulation at finite coupling

- Lattice MC simulation at finite μ and finite β with Nf=4 Takeda et al. ('13)
 - Ave. Phase Factor ~ 0.3 at $a\mu \sim 0.15$ (8³ x 4, $a\mu_c = am_{\pi}/2 \sim 0.7$)
- AFMC
 - Ave. Phase Factor ~ 0.6 around the transition (84, SCL)

Fluctuations in Strong Coupling Lattice QCD

Summary of formulation (MDP, AFMC)

Sign problem

Thank you

Lattice QCD action

- **Gluon field** \rightarrow Link variables $U_{\mu}(x) \simeq \exp(i g A_{\mu})$
- **Gluon action** \rightarrow **Plaquette action**

$$S_{G} = \frac{2N_{c}}{g^{2}} \sum_{plaq.} \left[1 - \frac{1}{N_{c}} \operatorname{Re} \operatorname{tr} U_{\mu\nu}(n) \right] \qquad U_{\nu}^{+}(n) \left[\frac{1/g^{2}}{n} \frac{n + \hat{\mu} + \hat{\nu}}{U_{\nu}(n + \hat{\mu})} \right]$$

• Loop \rightarrow surface integral of "rotation" $F_{\mu\nu}$ in the U(1) case.

Quark action (staggered fermion)

Ohnishi @ ATHIC 2014, Osaka, Aug. 5-8, 2014 38

 $n+\hat{\nu} \quad U^+_{\mu}(n+\nu)$

 $\mathbf{P}_{\mathbf{T}}^{\chi}$

Link integral → *Area Law*

One-link integral

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N_{cd}} \delta_{ad} \delta_{bc}$$

Wilson loop in pure Yang-Mills theory

$$\langle W(C = L \times N_{\tau}) \rangle = \frac{1}{Z} \int DU W(C) \exp \left[\frac{1}{g^2} \sum_{P} \operatorname{tr} \left(U_{P} + U_{P}^{*} \right) \right]$$
$$= \exp(-V(L) N_{\tau}) \qquad \qquad \mathbf{L}$$

in the strong coupling limit

$$\langle W(C) \rangle = N \left(\frac{1}{g^2 N} \right)^{L N_{\tau}}$$

 $\rightarrow V(L) = L \log(g^2 N)$

Linear potential between heavy-quarks → *Confinement (Wilson, 1974)*

 $= 1/N_{c} g^{2}$

1

N,

Link integral \rightarrow Effective action

- Effective action in the strong coupling limit (SCL)
 - Ignore plaquette action (1/g²)
 → We can integrate each link independently !
 - Integrate out spatial link variables of min. quark number diagrams (1/d expansion)

$$S_{\text{eff}} = S_F^{(t)} - \frac{1}{4N_c} \sum_{x, j} M_x M_{x+\hat{j}} + m_0 \sum_x M_x \quad (M_x = \bar{\chi}_x \chi_x)$$

Damgaard, Kawamoto, Shigemoto ('84)

 $\int_{0}^{\chi} \int_{0}^{U_{0}} \int_{0}^{U_{0}^{+}} \int_{0}^{W_{0}^{+}} \int_{0$

Phase diagram in SC-LQCD (mean field)

- Standard" simple procedure in Fermion many-body problem
 - Bosonize interaction term (Hubbard-Stratonovich transformation)
 - Mean field approximation (constant auxiliary field)
 - Fermion & temporal link integral Damgaard, Kawamoto, Shigemoto ('84); Faldt, Petersson ('86); Bilic, Karsch, Redlich ('92); Fukushima ('04); Nishida ('04)

Thank you

Phase Diagram under Various Conditions

Vacuum hadron properties + finite T (μ=0) lattice data

How can we investigate QCD phase diagram ?

- Non-pert. & ab initio approach
 - Monte-Carlo simulation of lattice QCD but lattice QCD at finite μ has the sign problem.

Sign Problem

Monte-Carlo integral of oscillating function

$$Z = \int dx \exp(-x^2 + 2iax) = \sqrt{\pi} \exp(-a^2)$$
$$\langle O \rangle = \frac{1}{Z} \int dx O(x) e^{-x^2 + 2iax}$$

Easy problem for human is not necessarily easy for computers.

Sign Problem (cont.)

- Generic problem in quantum many-body problems
 - Example: Euclid action of interacting Fermions

$$S = \sum_{x, y} \overline{\psi}_x D_{x, y} \psi_y + g \sum_x (\overline{\psi} \psi)_x (\overline{\psi} \psi)_x$$

• Bosonization and MC integral ($g>0 \rightarrow$ repulsive)

$$\exp(-g M_x M_x) = \int d\sigma_x \exp(-g\sigma_x^2 - 2ig\sigma_x M_x) \quad (M_x = (\bar{\psi}\psi)_x)$$

$$Z = \int D[\psi, \bar{\psi}, \sigma] \exp\left[-\bar{\psi}(D + 2ig\sigma)\psi - g\sum_x \sigma_x^2\right]$$

$$= \int D[\sigma] \quad \operatorname{Det}(D + 2ig\sigma) \exp\left[-g\sum_x \sigma_x^2\right]$$

complex Fermion det.

complex Fermion det. \rightarrow complex stat. weight \rightarrow sign problem

g

Sign problem in lattice QCD

- Fermion determinant (= stat. weight of MC integral) becomes complex at finite μ in LQCD.
 - γ₅ Hermiticity

$$Z = \int D[U, q, \overline{q}] \exp(-\overline{q} D(\mu, U) q - S_G(U))$$

=
$$\int D[U] \operatorname{Det}(D(\mu, U)) \exp(-S_G(U))$$

$$\gamma_5 D(\mu, U) \gamma_5 = [D(-\mu^*, U^+)]^+$$

$$\rightarrow \operatorname{Det}(D(\mu, U)) = [\operatorname{Det}(D(-\mu^*, U^+))]^*$$

- Fermion det. (Det D) is real for zero μ (and pure imag. μ)
- Fermion det. is complex for finite real μ.
- Phase quenched weight = Weight at isospin chem. pot.

$$Z_{\text{phase quench}}(T,\mu_u=\mu_d=\mu)=Z_{\text{full}}(T,\mu_u=-\mu_d=\mu)$$

How can we investigate QCD phase diagram ?

- Non-pert. & ab initio approach
 - Monte-Carlo simulation of lattice QCD but lattice QCD at finite μ has the sign problem.
- Effective model and/or Approximations are necessary.
 - Effective models:
 NJL, PNJL, PQM, ...
 Model dependence is large.
 - Approximation / Truncation Taylor expansion, Imag. μ , Canonical, Re-weighting, Strong coupling LQCD
 - Alternative method Fugacity expansion, Histogram method, Complex Langevin

Lattice QCD at fnite µ

- Various method work at small μ (μ/T < 1).</p>
- Large µ
 - Roberge-Weiss transition \rightarrow Conv. $\mu/T < \pi/3$ at T>T_{RW}
 - No go theorem Splittorff ('06), Han, Stephanov ('08), Hanada, Yamamoto ('11), Hidaka, Yamamoto ('11)

Phase quenched sim. ~ Isospin chem. pot.

$$Z_{\text{phase quench}}(T, \mu_u = \mu_d = \mu)$$
$$= Z_{\text{full}}(T, \mu_u = -\mu_d = \mu)$$

 \rightarrow CP in π cond. phase (Silver Blaze)

Ohnishi @ ATHIC 2014, Osaka, Aug. 5-8, 2014 49

Phase diagram in isospin chemical potential space

- Important in Compact Astrophys. phen.
- At vanishing quark chem. pot., there is no sign problem.
- Interesting 3D phase structure.

Kogut, Sinclair ('04); Sakai et al.('10); AO, Ueda, Nakano, Ruggieri, Sumiyoshi ('11)

PQM: Ueda, Nakano, AO, Ruggieri, Sumiyoshi ('13)

FRG: Kamikado, Strodthoff, von Smekal, Wambach ('13)

Appendix

Silver Blaze

- Watson, the dog did not bark at night. This is the evidence that he is the criminal who stole Silver Blaze."
- In physics,
 - "If $\delta \mu > m_{\pi}/2$ at low T and you do not have pion condensation, that theory should be wrong."

- Phase quench $D_d(\mu, U) \rightarrow D_d(-\mu^*, U^+)$
 - \rightarrow We can compose pions from original di-quark configuration.
- To do: Directly sample with complex S (CLE), Integrate U first (SC-LQCD), and some other method....

How can we investigate QCD phase diagram ?

- Non-pert. & ab initio approach
 = Monte-Carlo simulation of lattice QCD but lattice QCD at finite μ has the sign problem.
- Effective model and/or Approximations are necessary.
 - Effective models:
 NJL, PNJL, PQM, ...
 Model dependence is large.
 - Approximation / Truncation Taylor expansion, Imag. μ, Canonical, Re-weighting, Strong coupling LQCD
 - Alternative method This talk
 Fugacity expansion, Histogram method, Complex Langevin
 Alternative method This talk
 Nakamura, Nagata
 Ejiri
 Stamatescu

Strong Coupling Lattice QCD

Phase diagram

(mean field)

NNLO

0

2

6

1

0

Wilson ('74), Creutz ('80), Munster ('80, '81), Lottini, Philipsen, Langelage's ('11)

Kawamoto ('80), Kawamoto, Smit ('81), Damagaard, Hochberg, Kawamoto ('85), Bilic, Karsch, Redlich ('92), Fukushima ('03); Nishida ('03), Kawamoto, Miura, AO, Ohnuma ('07). Miura, Nakano, AO, Kawamoto ('09) Nakano, Miura, AO ('10)

0.8

0.4 0.6

Fluctuations

Mutter, Karsch ('89), de Forcrand, Fromm ('10), de Forcrand, Unger ('11), AO, Ichihara, Nakano ('12), Ichihara, Nakano, AO ('13)

SC-LQCD: Setups & Disclaimer

Effective action in SCL (1/g⁰), NLO (1/g²), NNLO (1/g⁴) terms and Polyakov loop.

NLO: Faldt-Petersson ('86), Bilic-Karsch-Redlich ('92) Conversion radius > 6 in pure YM ? Osterwalder-Seiler ('78)

One species of unrooted staggered fermion (N_f=4 @ cont.)

Moderate N_f deps. of phase boundary: BKR92, Nishida('04), D'Elia-Lombardo ('03)

- Leading order in 1/d expansion (d=3=space dim.)
 - → Min. # of quarks for a given plaquette configurations, no spatial B hopping term.
- Different from "strong couling" in "large N^{*}

Still far from "Realistic", but SC-LQCD would tell us useful qualitative features of the phase diagram and EOS.

Lattice QCD action

- **Gluon field** \rightarrow Link variables $U_{\mu}(x) \simeq \exp(i g A_{\mu})$
- **Gluon action** \rightarrow **Plaquette action**

$$S_{G} = \frac{2N_{c}}{g^{2}} \sum_{plaq.} \left[1 - \frac{1}{N_{c}} \operatorname{Re} \operatorname{tr} U_{\mu\nu}(n) \right] \qquad U_{\nu}^{+}(n) \left[\frac{1/g^{2}}{n} \frac{n + \hat{\mu} + \hat{\nu}}{U_{\nu}(n + \hat{\mu})} \right]$$

• Loop \rightarrow surface integral of "rotation" $F_{\mu\nu}$ in the U(1) case.

Quark action (staggered fermion)

Ohnishi @ ATHIC 2014, Osaka, Aug. 5-8, 2014 56

 $n + \hat{v} \quad U^+_{\mu}(n + v)$

 $\mathbf{P}_{\mathbf{T}}^{\boldsymbol{\chi}} \quad \mathbf{P}_{\mathbf{T}^+} \quad \mathbf{P}_{\mathbf{T}^+}$

Link integral → *Area Law*

One-link integral

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N} \delta_{ad} \delta_{bc}$$

Wilson loop in pure Yang-Mills theory

$$\langle W(C = L \times N_{\tau}) \rangle = \frac{1}{Z} \int DU W(C) \exp \left[\frac{1}{g^2} \sum_{P} \operatorname{tr} \left(U_{P} + U_{P}^{*} \right) \right]$$
$$= \exp(-V(L) N_{\tau}) \qquad \qquad \mathbf{L}$$

in the strong coupling limit

$$\langle W(C) \rangle = N \left(\frac{1}{g^2 N} \right)^{L N_{\tau}}$$

 $\Rightarrow V(L) = L \log(g^2 N)$

Linear potential between heavy-quarks → *Confinement (Wilson, 1974)*

$$= 1/N_{c} g^{2}$$

UKAWA INSTITUTE FOR THEORETICAL PHYSICS 鴌

Appendix

N,

Link integral \rightarrow Effective action

- Effective action in the strong coupling limit (SCL)
 - Ignore plaquette action (1/g²)
 → We can integrate each link independently !
 - Integrate out spatial link variables of min. quark number diagrams (1/d expansion)

$$S_{\text{eff}} = S_F^{(t)} - \frac{1}{4N_c} \sum_{x, j} M_x M_{x+\hat{j}} + m_0 \sum_x M_x \quad (M_x = \bar{\chi}_x \chi_x)$$

Damgaard, Kawamoto, Shigemoto ('84)

 $\int_{0}^{\chi} \int_{0}^{U_{0}} \int_{0}^{U_{0}^{+}} \int_{0}^{W_{0}^{+}} \int_{0$

Phase diagram in SC-LQCD (mean field)

- Standard" simple procedure in Fermion many-body problem
 - Bosonize interaction term (Hubbard-Stratonovich transformation)
 - Mean field approximation (constant auxiliary field)
 - Fermion & temporal link integral Damgaard, Kawamoto, Shigemoto ('84); Faldt, Petersson ('86); Bilic, Karsch, Redlich ('92); Fukushima ('04); Nishida ('04)

Finite Coupling Effects

Effective Action with finite coupling corrections Integral of $exp(-S_G)$ over spatial links with $exp(-S_F)$ weight $\rightarrow S_{eff}$

$$S_{\text{eff}} = S_{\text{SCL}} - \log \langle \exp(-S_G) \rangle = S_{\text{SCL}} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_c$$

<S_Gⁿ>_c=Cumulant (connected diagram contr.) *c.f. R.Kubo('62)*

 $N_c^2 \sum_{\mathbf{x}, j>0} \left(P_{\mathbf{x}} P_{\mathbf{x}+\hat{j}} + h.c. \right)$

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} (V_{x}^{+} - V_{x}^{-}) - \frac{b_{\sigma}}{2d} \sum_{x,j>0} [MM]_{jx}$$

$$SCL (Kawamoto-Smit, '81)$$

$$+ \frac{1}{2} \frac{\beta_{\tau}}{2d} \sum_{x,j>0} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} - \frac{1}{2} \frac{\beta_{s}}{d(d-1)} \sum_{x,j>0,k>0,k\neq j} [MMMM]_{jk,x}$$

$$NLO (Faldt-Petersson, '86)$$

$$- \frac{\beta_{\tau\tau}}{2d} \sum_{x,j>0} [W^{+}W^{-} + W^{-}W^{+}]_{j,x} - \frac{\beta_{ss}}{4d(d-1)(d-2)} \sum_{\substack{x,j>0,|k|>0,|l|>0\\|k|\neq j,|l|\neq |k|}} [MMMM]_{jk,x} [MM]_{j,x+\hat{l}}$$

$$+ \frac{\beta_{\tau s}}{8d(d-1)} \sum_{x,j>0,|k|\neq j} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} \left([MM]_{j,x+\hat{k}} + [MM]_{j,x+\hat{k}+\hat{0}} \right)$$

$$NNLO (Nakano, Miura, AO, '09)$$

$$(-1^{-})^{N_{\tau}} = \sum_{k=0}^{N_{\tau}} (\sigma_{k} - \sigma_{k})$$

$$Polyakoy loop (Gocksch, Ogilvie ('85), Fukushima ('04))$$

SC-LQCD with Polyakov Loop Effects at $\mu=0$

T. Z. Nakano, K. Miura, AO, PRD 83 (2011), 016014 [arXiv:1009.1518 [hep-lat]] P-SC-LQCD reproduces MC results of $T_c(\mu=0)$ ($\beta=2N_c/g^2 \le 4$) MC data: SCL (Karsch et al. (MDP), de Forcrand, Fromm (MDP)), $N_{\tau}=2$ (de Forcrand, private), $N_{\tau}=4$ (Gottlieb et al.('87), Fodor-Katz ('02)), $N_{\tau}=8$ (Gavai et al.('90))

Beyond the mean field approximation

Constant auxiliary field \rightarrow Fluctuating auxiliary field

$$\begin{split} S_{\text{eff}} &= S_F^{(t)} + \sum_{x} m_x M_x + \frac{L^3}{4N_c} \sum_{k,\tau} f(k) \Big[|\sigma_{k,\tau}|^2 + |\pi_{k,\tau}|^2 \Big] \\ m_x &= m_0 + \frac{1}{4N_c} \sum_{j} \left((\sigma + i \varepsilon \pi)_{x+\hat{j}} + (\sigma + i \varepsilon \pi)_{x-\hat{j}} \right) \\ f(k) &= \sum_{j} \cos k_j < , \quad \varepsilon = (-1)^{x_0 + x_1 + x_2 + x_3} \end{split}$$

- Auxiliary Field Monte-Carlo (AFMC) integral
 - Another method: Monomer-Dimer-Polymer simulation Mutter, Karsch ('89), de Forcrand, Fromm ('10), de Forcrand, Unger ('11)
- Bosonization of "repulsive" mode: Extended HS transf.
 → Introducing "*i*" leads to the complex Fermion determinant.
 Miura, Nakano, AO (09), Miura, Nakano, AO, Kawamoto (09)

Origin of the sign problem in AFMC

Extended Hubbard-Stratonovich transformation

Miura, Nakano, AO ('09), Miura, Nakano, AO, Kawamoto ('09)

$$e^{\alpha AB} = \int d\varphi d\varphi e^{-\alpha [(\varphi + (A+B)/2)^2 + (\varphi + i(A-B)/2)^2 - AB]}$$

=
$$\int d\varphi d\varphi e^{-\alpha [\varphi^2 + \varphi^2 + \varphi(A+B) + i\varphi(A-B)]}$$

Complex

- We need "i" to bosonize product of different kind. → Fermion determinant becomes complex.
- Bosonization in AFMC in the strong coupling limit

$$\begin{split} \exp\left\{\alpha f(\mathbf{k})\left[M_{-\mathbf{k},\tau}M_{\mathbf{k},\tau}-M_{-\bar{\mathbf{k}},\tau}M_{\bar{\mathbf{k}},\tau}\right]\right\}\\ &=\int d\sigma_{\mathbf{k},\tau}\,d\sigma_{\mathbf{k},\tau}^*\,d\pi_{\mathbf{k},\tau}\,d\pi_{\mathbf{k},\tau}^*\exp\left\{-\alpha f(\mathbf{k})\left[|\sigma_{\mathbf{k},\tau}|^2+|\pi_{\mathbf{k},\tau}|^2\right.\right.\right.\\ &\left.\left.+\sigma_{\mathbf{k},\tau}^*M_{\mathbf{k},\tau}+M_{-\mathbf{k},\tau}\sigma_{\mathbf{k},\tau}-i\pi_{\mathbf{k},\tau}^*M_{\bar{\mathbf{k}},\tau}-iM_{-\bar{\mathbf{k}},\tau}\pi_{\mathbf{k},\tau}\right]\right\}\end{split}$$

Repulsive interaction in Mean Field Approximation

Mean field treatment of repulsive interaction

$$e^{-\alpha A^{2}} = \int d\phi \exp\left(-\alpha \left[\phi^{2} - 2i\phi A\right]\right)$$

= $\int d\phi \exp\left(-\alpha \left[(\phi + i\omega)^{2} - 2i(\phi + i\omega)A\right]\right)$
= $\int d\phi \exp\left(-\alpha \left[\phi^{2} + 2i\phi(\omega - A) - \omega^{2} + 2\omega A\right]\right)$
 $\simeq \exp\left(\alpha \left[\omega^{2} - 2\omega A\right]\right) \quad (\phi = i\omega, \ \omega = \langle A \rangle)$

Appendix

Auxiliary Field Effective Action

■ Fermion det. + U0 integral can be done analytically. → Auxiliary field effective action

$$\begin{split} S_{\text{eff}}^{\text{AF}} &= \sum_{\substack{\boldsymbol{k}\,,\,\tau\,,\,f\left(\boldsymbol{k}\right)>0}} \frac{L^{3}f\left(\boldsymbol{k}\right)}{4N_{c}} \left[\left|\sigma_{\boldsymbol{k}\,,\tau}\right|^{2} + \left|\pi_{\boldsymbol{k}\,,\tau}\right|^{2}\right] \\ &- \sum_{\boldsymbol{x}} \log \left[X_{N}(\boldsymbol{x})^{3} - 2X_{N}(\boldsymbol{x}) + 2\cosh\left(3\mu/T\right)\right] \\ X_{N}(\boldsymbol{x}) &= X_{N}[m(\boldsymbol{x}\,,\tau)] \quad (\text{known func.}) \\ m_{x} &= m_{0} + \frac{1}{4N_{c}} \sum_{j} \left(\left(\sigma + i\,\varepsilon\,\pi\right)_{x+\,\hat{j}} + \left(\sigma + i\,\varepsilon\,\pi\right)_{x-\hat{j}}\right) \end{split}$$

- $X_N = Known function of m(x, \tau)$ For constant m, $X_N = 2 \cosh(N_\tau \operatorname{arcsinh}(m/\gamma))$
- Imag. part from $X_N \rightarrow$ Relatively smaller at large μ/T
- Imag. part from low momentum AF cancels due to it factor.

Chiral Angle Fixing

How can we simulate correct thermodynamic chiral limit using finite volume simulations ?

Ichihara, AO, Nakano ('14)

c.f. rms spin is adopted in spin systems Kurt, Dieter ('10)

YUKAWA INSTITUTE FOR

Order Parameters

AWA INSTITUTE FOI

Error estimate by Jack-knife method

HEORETICAL PHYSIC

⁶⁸

Phase boundary

 ΔS

- Low µ/T region (would-be second)
 → Chiral susc. peak
- High µ/T region
 (would-be first)
 - → Average eff. action from Wigner/NG init. cond.

c.f. Exchange MC (Hukuyama)

Finite Size Scaling of Chiral Susceptibility

- **Finite size scaling of** χ_{σ} in the V (spatial vol.) $\rightarrow \infty$ limit
 - Crossover: Finite
 - Second order: $\chi_{\sigma} \propto V^{(2-\eta)/3}$, η =0.0380(4) in 3d O(2) spin *Campostrini et al. ('01)*
 - First order: $\chi_{\sigma} \propto V$
- AFMC results : Not First order at low μ/T.

Phase diagram

YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Ichihara, AO, Nakano ('14)

Monomer-Dimer-Polymer simulation

The partition function of LQCD can be given as the sum of monomer-dimer-polymer (MDP) configuration weight. The sign problem is mild.
Karsch, Mutter ('89)

$$Z(2 ma, \mu, r) = \sum_{K} w_{K}$$

$$w_{K} = (2 ma)^{N_{M}} r^{2N_{t}} (1/3)^{N_{1}N_{2}} \prod_{X} w(X) \prod_{C} w(C)$$

MDP with worm algorithm is applied to study the phase diagram de Forcrand, Fromm ('10), de Forcrand, Unger ('11)

Ohnishi @ ATHIC 2014, Osaka, Aug. 5-8, 2014 73

Average Phase Factor

AFMC (1/g²=0, 4³X4 or 8³X8) Average phase factor

u/T=0.0-0.5

4³X4

Average phase factor = Weight cancellation

$$\langle e^{i\theta} \rangle = Z_{\text{phase quenched}} / Z_{\text{full}}$$

AFMC results

Comparison with Direct Simulation at finite coupling

- Lattice MC simulation at finite μ and finite β with Nf=4 Takeda et al. ('13)
 - Ave. Phase Factor ~ 0.3 at $a\mu \sim 0.15$ (8³ x 4, $a\mu_c = am_{\pi}/2 \sim 0.7$)
- AFMC
 - Ave. Phase Factor ~ 0.6 around the transition (84, SCL)

Discussion: Comparison with MDP

Free energy difference

 $\langle \exp(i\theta) \rangle \equiv \exp(-\Omega \Delta f)$, $\Omega =$ space-time volume

MDP simulation on anisotropic lattice at finite T and μ de Forcrand, Fromm ('10), de Forcrand, Unger ('11)

- Strong coupling limit.
- Higher-order terms in 1/d expansion
- No sign problem in the continuous time limit (N $\tau \rightarrow \infty$).

Summary

- Strong coupling lattice QCD is a promising tool in finite density lattice QCD.
 - Strong coupling limit + finite coupling correction + Polyakov loop
 → MC results of Tc is roughly reproduced.
 - Fluctuation effects can be included in auxiliary field Monte-Carlo
 - Sign problem could be partially solved in the strong coupling limit. Two independent methods show the same phase boundary, and the spatial size dependence is small. (Monomer-dimer-polymer simulation, AFMC)
- Challenge
 - Finite coupling + Fluctuations Different type of Fermion

Unger et al. ('13)

Minimally doubled fermion, Misumi, Kimura, AO ('12) Higher order terms in 1/d expansion,

Ohnishi (a) **ATHIC 2014, Osaka, Aug. 5-8, 2014** 77

Real Challenge: How to live with the sign problem

- Idea 1: Cutoff or Gauss integral of high momentum modes
- Idea 2: Change the integral path

WA INSTITUTE FO

Idea 3: Combination of Fugacity exp. or Histogram method

Ohnishi @ ATHIC 2014, Osaka, Aug. 5-8, 2014 78

Thank you

Ohnishi @ ATHIC 2014, Osaka, Aug. 5-8, 2014 79