Hadron physics & Astrophysics From Exotic Hadron to Neutron Star Matter EOS

Hadron Physics Symp., Apr.17-19, Nagoya, Japan

Akira Ohnishi (YITP, Kyoto Univ.)

Grant-in-Aid for Innovative Areas

• New Hadron (2009-2014, T. lijima)

• Neutron Star Matter (2012-2017, H.Tamura)

New Hadrons

• Renaissance of hadron physics

Key quantity = Hadron size (interaction range)

Neutron Star Matter

- Cold, dense, charge neutral
- Constituents
 n, p, e, μ,
 Y, π, K,
 q, di-quark, ...

F. Weber, Prog. Part. Nucl. Phys. 54 ('05) 193 Can we determine int. btw constituents ?

Discovery of Massive Neutron Stars

- M_{NS}=1.97±0.04 M_{sun} measured using Shapiro delay (GR effect).
- EOSs w/ strange hadrons are ruled out, while Lab. exp. suggest their existence in NS.

Demorest et al., Nature 467 (2010) 1081.

Massive Neutron Star Puzzle

Interactions btw short-lived hadrons

• Scattering, Nuclear bound state, Atomic shift

- Correlations from heavy-ion collisions
- Exotic hadron spectroscopy

Exotic hadron is important to access hh int.

Contents

- Introduction
- Exotic hadrons and hadron-hadron interaction
 - Exotic hadrons from heavy-ion collisions (S.H.Lee)
 - Hadron-hadron interaction from heavy-ion collisions
- Impact on Neutron Star Matter EOS
 - Hyperonic EOS after 2 Msun NS discovery
 - "Universal" 3-body repulsion
- Summary

Exotic hadrons from Heavy-Ion Collisions

- HIC = Hadron factory
- Formation mechanism
 Statistical , Coalescence, Fragmentation.
- Yield(stat.)~Yield(Coal.) for normal hadrons.
- What happens for exotic hadrons ?

Exotic hadrons from Heavy-Ion Collisions

Hadron size and production yield

- Yield(Coal.) $\propto \int f_{th}(const.) \times f_w(intrinsic)$
 - f = phase space dist. fn. (Wigner fn.)
 → Larger yield for similar shape of f in phase space.
- Example: T=170 MeV, red. mass=500 MeV source size= 5 fm → optimal hω ~ 16 MeV (<< 300-500 MeV)

Hadron-Hadron correlation in HIC

- Correlation func. ~ ∫ Source x |w.f.|² → If source is known, corr. fn. tells us w.f. or interaction. Bauer, Gelbke, Pratt ('92); Lednicky ('09).
- ΛΛ correlation is measured in (K⁻,K⁺) reaction
 C.J. Yoon et al. (KEK-E522)('07) J.K.Ahn et al. (KEK-E224)
- STAR measured
 ΛΛ correlation at RHIC
 N. Shah et al.('12)

ΛΛ correlation at RHIC

Data (STAR prelim.): N. Shah et al.('12), Cal.: AO for ExHIC ('13)

ΛΛ interaction and correlation

- $\Lambda\Lambda$ int.
 - Nijmegen models
 Rijken et al.
 - quark model (fss2)
 Fujiwara et al. ('01)
 - Nagara fit
 Filikhin, Gal ('02) Hiyama et al.('02)
- Source models
 - sph. static source
 - cylindrical source w/ flow

AO et al. (ExHIC Collab.), NPA914 ('13), 377 [arXiv:1301.7261 [nucl-th]].

Analysis of updated STAR data is in progress and will be reported in K. Morita, AO, T. Furumoto (in prep.)

Preferred ΛΛ interaction

Allowed region from updated STAR data will be reported in K. Morita, AO, T. Furumoto (in prep.)

Contents

- Introduction
- Exotic hadrons and hadron-hadron interaction
 - Exotic hadrons from heavy-ion collisions (S.H.Lee)
 - Hadron-hadron interaction from heavy-ion collisions
- Impact on Neutron Star Matter EOS
 - Hyperonic EOS after 2 Msun NS discovery
 - "Universal" 3-body repulsion
- Summary

NS matter EOS with hyperons

- "Ruled-out" hyperonic EOS = Naive RMF Glendenning, Moszkowski ('91)
 - Relativistic Mean Field (RMF) models
 - SU(6) coupling (~ quark counting) $g_{\sigma\Lambda} = \frac{2}{3} g_{\sigma N}$
 - No ss mesons
- Proposed prescription after 2 Msun NS
 - Modify coupling constant from SU(6) value
 Weisenborn et al. ('11); Tsubakihara, AO, Harada ('13)
 - Introducing three-body repulsion
 Bednarek, et al.('11); Miyatsu, Yamamuro, Nakazato ('13)
 - Crossover transition to quark matter Masuda, Hatsuda, Takatsuka ('12)

NS matter EOS with hyperons

NS matter EOS with hyperons

Calculated Neutron Star Mass

Vector coupling in RMF

- Σ- atomic shift
 - Measured for isospin symmetric (O, Si) and asymmetric (W, Pb) nuclei.
 - gpΣ need to be much smaller than SU(6).
 g_{pΣ} (SU(6))=2 g_{pN}
 g_{pΣ} (AS)=(0.3-0.4)g_{pN}
 Mares, Friedman,
 Gal, Jennnings ('95)

Mesons in RMF should be taken as effective field

Ch-EFT EOS

- Phen. models need inputs from Experimental Data and/or Microscopic (Ab initio) Calc.
- Recent Ch-EFT EOS is promising !
 - NN (N3LO)+3NF(N2LO)
 Kohno ('13)

M. Kohno, PRC 88 ('13) 064005

"Universal" mechanism of "Three-body" repulsion

- " σ "-exchange ~ two pion exch. w/ res.
 - "Universal" 3-body repulsion is necessary *Nishizaki, Takatsuka, Yamamoto ('02)*
 - Large attraction from two pion exchange is suppressed by the Pauli blocking in the intermediate stage.
 → Three-body repulsion

"Universal" 3BR = Reduced "σ" exch. pot. ?

Physical Picture

ΛΛ interaction in vacuum and in medium

- $\Lambda\Lambda$ interaction in vacuum may be accessible
 - Correlation from HIC
 - Lattice QCD calc. HAL QCD ('11) & NPLQCD ('11)
- ΛΛ interaction could be different in vacuum and in medium
 - a₀(~ best fit, fss2) = 0.82 fm
 Fujiwara et al. ('01)
 - a₀(Nagara fit) = 0.575 fm
 Hiyama et al. ('02)
- Pauli blocking in the Q-space ?
 - ΛΛ-ΞΝ couples in vacuum
 - Coupling is suppressed in ${}^{6}_{\Lambda\Lambda}$ He

Summary

- Hadron size and interaction between short-lived hadrons would be accessible via spectroscopy, yield, and correlation.
 - ExHIC conjecture: Larger yield of multi-q. states in e⁺e⁻ and pA collisions.
- NS matter EOS with hyperons can support 2 Msun NS by introducing phen. parameters.
 - Need exp. data and ab initio calc.
 J-PARC exp. / Lattice BB and BBB int. / Ch-EFT
 - Comparison of AA nuclei and AA corr. in HIC may be useful to pin down YYN three-body repulsion.

Let's keep in touch !

Future works & Remaining problems

 Even in phen. EOS with three-body couping, consistent understanding of K, E_{sym}, L, M_{max}, U_Y, ...

are not obtained.

- How can we incorporate ab initio results in phen. treatment ?
- $\Lambda\Lambda$ correlation is still problematic.
 - Obtained source size seems to be very small (Homogeneity length, rather than source size).

