YYN3 体力 *重イオン衝突とハイパー核から中性子星へ*

A. Ohnishi (YITP)

in collaboration with K. Morita (Frankfurt), T. Furumoto (Ichinoseki CT)

Iwate, June 27-29, 2014

Ohnishi @ Iwate 2014 1

CV

- 1964 神戸生まれ (50 才になりました)
- 1983-1992 京都大学(玉垣研究室、PhD advisor: 堀内)
- 1992-1993 阪大 RCNP(学振)
- 1993-2008 北大(助手 → 講師 → 助教授(准教授))
- 2008- 京大基研

Neutron Star Matter

- Cold, dense, charge neutral
- Constituents
 - n, p, e, μ, Y, π, K, q, di-quark, ...

Neutron Star Matter

- Cold, dense, charge neutral
- Constituents
 - n, p, e, μ, Y, π, K, q, di-quark, ...

Can we determine int. btw constituents ?

4

Massive Neutron Stars

- M_{NS}=1.97±0.04 Msun measured using Shapiro delay (GR effect).
- EOSs w/ strange hadrons are "ruled out", while Lab. exp. suggest their existence in NS.

WA INSTITUTE FO

NS matter EOS with hyperons

- "Ruled-out" hyperonic EOS = Naive RMF Glendenning, Moszkowski ('91)
 - SU(6) coupling (~ quark counting) $g_{\sigma\Lambda} = 2/3 g_{\sigma N}$
 - No ss mesons
- Proposed prescription after 2 Msun NS
 - Modify coupling constant from SU(6) value Weisenborn et al., ('11); Tsubakihara, AO, Harada ('13)
 - Introducing three-body repulsion Bednarek, et al.('11); Miyatsu, Yamamuro, Nakazato ('13)
 - Crossover transition to quark matter *Masuda, Hatsuda, Takatsuka (*12)*

6

Three Baryon Repulsion

Nishizaki, Takatsuka, Yamamoto ('02)

Ohnishi @ Iwate 2014

7

NS matter EOS with hyperons

Ohnishi @ Iwate 2014

NS matter EOS with hyperons

Calculated Neutron Star Mass

Tsubakihara, AO, Harada, arXiv:14020979

9

Vector coupling in RMF

- Σ atomic shift
 - Measured for isospin symmetric (O, Si) and asymmetric (W, Pb) nuclei.
 - $g_{0\Sigma}$ need to be much smaller than SU(6).

 $g_{\rho\Sigma} (SU(6))=2 g_{\rho N}$ $g_{\rho\Sigma} (AS)=(0.3-0.4)g_{\rho N}$ Mares, Friedman, Gal, Jennnings ('95)

Tsubakihara, AO, Harada, arXiv:14020979

Mesons in RMF should be taken as effective field

Ch-EFT EOS

Phen. models need inputs from Experimental Data and/or Microscopic (Ab initio) Calc.

Recent Ch-EFT EOS is promising ! NN (N3LO)+3NF(N2LO) Kohno ('13)

M. Kohno, PRC 88 ('13) 064005

"Universal" mechanism of "Three-body" repulsion

- "Universal" 3-body repulsion is necessary to support NS. Nishizaki, Takatsuka, Yamamoto ('02)
- Mechanism of "Universal" Three-Baryon Repulsion.
 - "σ"-exchange ~ two pion exch. w/ res.
 - Large attraction from two pion exchange is suppressed by the Pauli blocking in the intermediate stage. Kohno ('13)

Physical Picture

"Universal" TBR

- Coupling to Res. (hidden DOF)
- Reduced " σ " exch. pot. ?

How about YNN or YYN ?

AA interaction in vacuum and in nuclear medium

- Vacuum ΛΛ interaction may be theoretically accessible Lattice QCD calc. HAL QCD ('11) & NPLQCD ('11)
- In-medium ΛΛ interaction may be experimentally accessible
 - Bond energy of ${}^{6}_{\Lambda\Lambda}$ He $\Delta B_{\Lambda\Lambda}$ =1.0 MeV \rightarrow 0.6 MeV
 - a_0 (Nagara fit) = 0.575 fm ($\Delta B_{\Lambda\Lambda}$ =1.0 MeV) Hiyama et al. ('02)
- Difference of vacuum & in-medium ΛΛ int. would inform us ΛΛN int. effects.
 - ΛΛ-ΞΝ couples in vacuum
 - Coupling is suppressed in ${}^{6}_{\Lambda\Lambda}$ He

Is there Any way to access vacuum AA int. experimentally ?

Interactions btw short-lived hadrons

Scattering, Nuclear bound state, Atomic shift

- Exotic hadron spectroscopy
- Correlations from heavy-ion collisions
 - STAR data of AA correlation

This talk

Contents

- Introduction
 - Massive NS and NS matter EOS
 - Strangeness in NS matter
 - "Universal" Three-Baryon Repulsion
- Constraint on ΛΛ interaction from HIC
 - ΛΛ correlation in heavy-ion collisions
 - Constraint on $\Lambda\Lambda$ interaction from HIC data
- Discussion
 - Can we see the difference btw vacuum and in-medium ΛΛ interaction ?
 - Do we see H in ΛΛ correlation ?
- Summary

Hadron-Hadron correlation in HIC

Hanbury-Brown and Twiss Effects for free bosons

$$C(q) = \int dx \frac{\exp(-x^2/4R^2)}{(4\pi R^2)^{-3/2}} \frac{|\sqrt{2}\cos q \cdot x|^2}{|\sqrt{2}\cos q \cdot x|^2} + \exp(-4q^2R^2)$$
Source
$$|\Psi|^2$$

- **Correlation func.** $\sim \int$ Source x $|\Psi|^2$
 - → If source is known, corr. fn. tells us w.f. or interaction. Bauer, Gelbke, Pratt ('92); Lednicky ('09).
- ΛΛ correlation is measured in (K-,K+) reaction C.J. Yoon et al. (KEK-E522)('07); J.K.Ahn et al. (KEK-E224)
- STAR measured ΛΛ correlation at RHIC N. Shah et al.('12)

Let's try to constrain AA interaction !

$\Lambda\Lambda$ correlation from (K⁻,K⁺ $\Lambda\Lambda$) reaction

Enhancement at ~ 2 M(Λ)+ 10 MeV,

IKAWA INSTITUTE FOI

AA Invariant Mass Spectrum

AA correlation in HIC

- Merit of HIC to measure ΛΛ correlation
 - Source is "Simple and Clean" !
 T, μ, flow, size, ... are well-analyzed.
 - Nearly Stat. prod.
 → Many exotics will be produced.
 Cho et al.(ExHIC Collab.) ('11)

UKAWA INSTITUTE FO

AA correlation at RHIC

Data (STAR prelim.): N. Shah et al.('12), Cal.: AO for ExHIC ('13)

AA correlation at RHIC

Data (STAR): N. Shah et al.('14, to be submitted) Cal.: Morita et al. (to be submitted)

AA interaction models

- Boson exchange potentials
 - Nijmegen potentials: various versions Rijken et al., ('77-'10) Hard core: Nijmegen model D & F (ND, NF) Soft core: Nijmegen soft core '89 & '97 (NSC89, NSC97) Extended soft core: ESC08
 - Ehime potential: would be too attractive. Ehime fits old double Λ hypernucl. data, $\Delta B_{\Lambda\Lambda} = 4$ MeV

Quark cluster model

- fss2 *Fujiwara, Kohno, Nakamoto, Suzuki ('01)* Short range repulsion from quark Pauli blocking & OGE
 Core is softer due to non-locality
- Modified Nijmegen potentials fitting Nagara data. Filikhin, Gal ('02), Hiyama et al.('02)
 - Potential Fitting Nagara data $\Delta B_{\Lambda\Lambda} = 1.0 \text{ MeV}$

AA interaction models

Low energy scattering parameters, (a₀, r_{eff})

$$k \cot \delta = -\frac{1}{a_0} + \frac{1}{2} r_{\text{eff}} k^2 + O(k^4)$$

• $a_0 > 0$ (bound region), $a_0 < 0$ (no bound region)

- Potential parameters
 - Hard core radius (ND, NF), cutoff mass (NSC89), spin dependence (NSC97a-f).

ΛΛ correlation function

Two particle correlation function

Koonin ('77)

$$C_2(\boldsymbol{Q}, \boldsymbol{K}) = \frac{W_2(\boldsymbol{k_1}, \boldsymbol{k_2})}{W_1(\boldsymbol{k_1})W_1(\boldsymbol{k_2})} = \frac{\int d^4 x_1 d^4 x_2 S(x_1, \boldsymbol{K}) S(x_2, \boldsymbol{K}) |\Psi_{12}(\boldsymbol{Q}, x_1 - x_2 - (t_2 - t_1)\boldsymbol{K}/\boldsymbol{m})|^2}{\int d^4 x_1 d^4 x_2 S(x_1, \boldsymbol{k_1}) S(x_1, \boldsymbol{k_2})}$$

- W₁(k), W₂(k₁,k₂): 1 & 2 partcl. dist., S(x, k): phase spc. dist. Q=(k₁-k₂), K=(k₁+k₂)/2
- Wave fn. Ψ (assumption: only the s-wave partial wave is modified.)

$$\begin{split} \Psi_{s} &= \sqrt{2} \left[\cos \mathbf{Q} \cdot \mathbf{r}/2 + \chi_{Q}(\mathbf{r}) - j_{0}(\mathbf{Q}\mathbf{r}/2) \right] \\ \Psi_{t} &= \sqrt{2} i \sin \mathbf{Q} \cdot \mathbf{r}/2 \\ |\Psi_{12}|^{2} &= 1 - \frac{1}{2} \cos \mathbf{Q} \cdot \mathbf{r} + \cos \left(\mathbf{Q} \cdot \mathbf{r}/2 \right) \Delta \chi_{Q}(\mathbf{r}) + \left[\Delta \chi_{Q}(\mathbf{r}) \right]^{2} \\ \Delta \chi_{Q}(\mathbf{r}) &= \chi_{Q}(\mathbf{r}) - j_{0}(\mathbf{Q}\mathbf{r}/2) \end{split}$$

Static Spherical Source

Correlation fn. with static, spherical gaussian source

$$C_{\Lambda\Lambda}(Q) \simeq 1 - \frac{1}{2} \exp(-Q^2 R^2) + \frac{1}{2} \int dr S_{12}(r) \left(|\chi_Q(r)|^2 - |j_0(Qr/2)|^2 \right)$$

Morita, Furumoto, AO (to be submitted)

Geometry & Flow Effects

Boost invariant source with flow effects S. Chapman, P. Scotto, U. Heinz, Heavy Ion Phys. 1, 1 (1995).

$$S(x, k) = \frac{m_T \cosh(y - Y_L)}{(2\pi)^3 \sqrt{2\pi} (\Delta \tau)^2} n_f(u \cdot k, T) \exp\left[-\frac{(\tau - \tau_0)}{2(\Delta \tau)^2} - \frac{x^2 + y^2}{2R^2}\right]$$

AA correlation with flow effects

Results with flow effects

AWA INSTITUTE FO

- Optimal transverse source size R ~ (0.8-1.1) fm
- HBT source size is interpreted as the "homogeneity length", but it is still too small compared with the proton source size, R_p ~ (2-4) fm.

AA correlation from Cylindrical Source with Flow

Y TP CS

Morita, Furumoto, AO (to be submitted)

Preferred AA interactions

Contents

- Introduction
 - Massive NS and NS matter EOS
 - Strangeness in NS matter
 - "Universal" Three-Baryon Repulsion
- Constraint on ΛΛ interaction from HIC
 - ΛΛ correlation in heavy-ion collisions
 - Constraint on $\Lambda\Lambda$ interaction from HIC data
- Discussion
 - Can we see the difference btw vacuum and in-medium ΛΛ interaction ?
 - Do we see H in ΛΛ correlation ?
- Summary

Comparison with In-medium interaction.

- $\Lambda\Lambda$ interactions from Nagara event ($\Delta B_{\Lambda\Lambda} = 1.0$ MeV)
 - Hiyama, Kamimura, Motoba, Yamada, Yamamoto ('02)
 (a₀, r_{eff}) = (-0.575 fm, 6.45 fm)
 - Filikhin, Gal ('02)
 (a₀, r_{eff}) = (-0.77 fm, 6.59 fm)
- \blacksquare Ξ^{-} mass is updated by PDG
 - Bond energy is updated $\Delta B_{\Lambda\Lambda} = 0.67 \text{ MeV}$ $\rightarrow a_0 \text{ will be reduced}$ by 10-20 % $a_0 \sim -(0.5-0.65) \text{ fm} \equiv$

Do we see H as a resonance ?

Deeply bound H is ruled out by double Λ hypernuclear mass. M_H > 2 M_{Λ} - 6.91 MeV

00

- **Existence of H as a resonance is not ruled out.** \rightarrow Let's try to find it ! $\wedge \wedge \circ$
- Procedure
 - Assume the bump comes from H, and give (E_H, Γ_H).
 - Compare the bump height with statistical model yield.
 - If H exists at low E (E=(1-2) MeV), we can find the signal by reducing the error by a factor of two.

Morita, Furumoto, AO (to be submitted)

Other source of correlation ?

- ΛΛ correlation would be modified by
 - Feed down effects from Ξ and Σ^0 decay,

 $\Xi^{-} \rightarrow \pi^{-} \Lambda$ (detectable)

 $\Sigma^0 \rightarrow \gamma \Lambda$ (will be detectable at LHC (Kwon et al.)) Σ^0 effects can be taken are of by multiplying 0.41 to (C-1), and preferred V($\Lambda\Lambda$) are similar to the present result.

 If feed down Λ is included, the correlation is affected by the parent pair interaction.

E.g. pp correlation is significantly affected by V($p\Lambda$).

 $(\Lambda \rightarrow \pi^{-} p and no Coulomb suppression in p\Lambda channel.)$

Since there is no Coulomb suppression in $\Lambda\Lambda$ pair, parent pair interaction effects may be less serious than in pp correlation.

Further investigation is necessary to pin down ΛΛ interaction more precisely.

Summary

- We need additional repulsion to solve massive neutron star puzzle related to strangeness hadrons.
 - Need exp. data and ab initio calc. J-PARC exp. / Lattice BB and BBB int. / Ch-EFT
- We have constrained ΛΛ low energy scattering parameters using ΛΛ correlation data from STAR collaboration.
 - Optimal source size & flow parameter are fixed by using correlation and pT spectrum.
 - Preferred scattering parameters are found to be in the range, -1.8 fm⁻¹ < 1/a₀ < -0.8 fm⁻¹, 3.5 fm < r_{eff} < 7 fm
 - Other mechanisms may need to be taken care of.
- **Information on ΛΛΝ may be accessible via correlation in HIC**
 - In-medium ΛΛ interaction seems to be weaker than vacuum interaction.

Thank you

Where is the S=-2 dibaryon (uuddss) "H"?

RHIC & LHC = Hadron Factory including Exotics

 "H" would be formed as frequently as stat. model predicts. Cho,Furumoto,Hyodo,Jido, Ko, Lee,Nielsen,AO,Sekihara,Yasui,Yazaki
 Collab.), PRL('11)212001; arXiv:t:1107.1302 Ohnishi @ Iwate 2014

Nagara event

⁶He hypernuclei

Takahashi et al., PRL87('01)212502 (KEK-E373 experiment) Lambpha

 $m({}_{AA}^{6}He) = 5951.82 \pm 0.54 \text{MeV}$ $B_{AA} = 7.25 \pm 0.19 {}_{-0.11}^{+0.18} \text{MeV}$ $\Delta B_{AA} = 1.01 \pm 0.20 {}_{-0.11}^{+0.18} \text{MeV}$ (assumed $B_{\Xi}^{-} = 0.13 \text{ MeV}$)

 \rightarrow B_{AA} = 6.91 MeV (PDG modified(updated) Ξ^{-} mass)

$$\overline{Z}^{-} + {}^{12}C \longrightarrow {}^{6}_{\Lambda\Lambda}He + {}^{4}He + t$$

$${}^{6}_{\Lambda\Lambda}He \longrightarrow {}^{5}_{\Lambda}He + p + \pi^{-}$$

Lattice QCD predicts bound "H"

• "H" bounds with heavy π (M_{π} > 400 MeV)

NPLQCD Collab., PRL 106 (2011) 162001; HAL QCD Collab., PRL 106 (2011) 162002

AA interaction and correlation

- ΛΛ int.
 - Nijmegen models Rijken et al.
 - quark model (fss2)Fujiwara et al. ('01)
 - Nagara fit
 Filikhin, Gal ('02);
 Hiyama et al.('02)
- Source models
 - sph. static source
 - cylindrical source w/ flow

K. Morita, AO, T. Furumoto (in prep.)

Ohnishi (*a Iwate* 2014 39