Constraint on AA Interaction from Heavy-Ion Collisions and Its Relevance to AAN Three-Body Interaction

A. Ohnishi (YITP)

in collaboration with K. Morita (Frankfurt), T. Furumoto (Ichinoseki CT)

QH seminar, June 27, 2014

Neutron Star Matter

quark-hybrid star

- Cold, dense, charge neutral
- Constituents
 - n, p, e, μ , Y, π , K, q, di-quark, ...

hyperon star with pion condensate

color-superconducting strange quark matter (u,d,s quarks)

2SC

CSL

CSL

CFL-K

GCFL

CFL-K

CFL-K

CFL-K

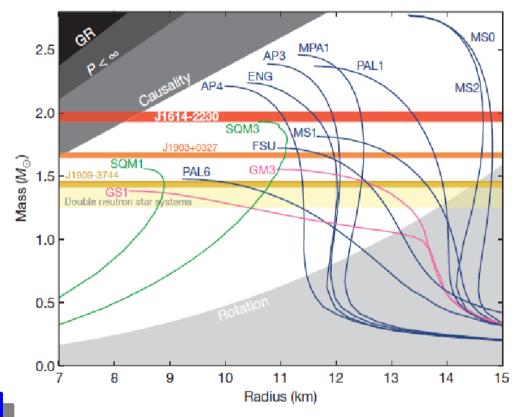
CFL-T

R

R ~ 10 km

Nee

F. Weber, Prog. Part. Nucl. Phys. 54 ('05) 193

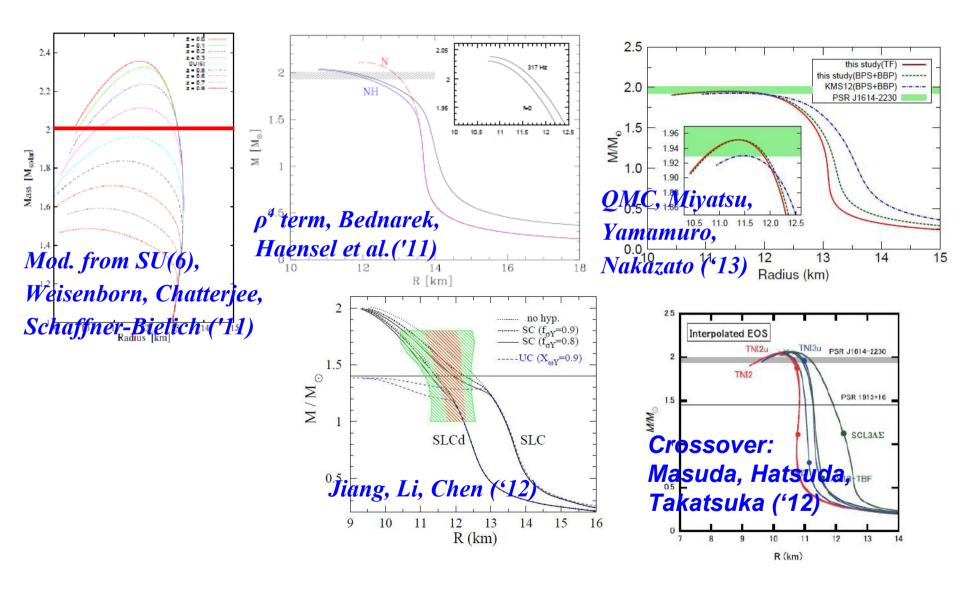

Can we determine int. btw constituents?

traditional neutron star

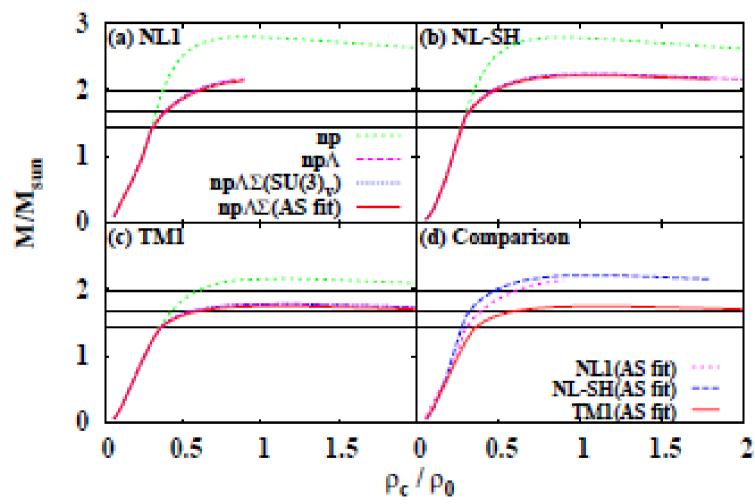
Massive Neutron Stars

- M_{NS}=1.97±0.04 Msun measured using Shapiro delay (GR effect).
- EOSs w/ strange hadrons are "ruled out", while Lab. exp. suggest their existence in NS.

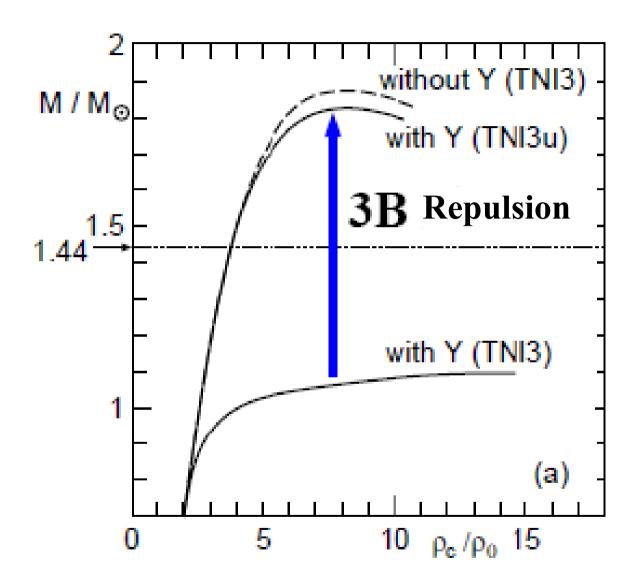
Massive Neutron Star Puzzle


Demorest et al., Nature 467 (2010) 1081.

NS matter EOS with hyperons


- "Ruled-out" hyperonic EOS = Naive RMF Glendenning, Moszkowski ('91)
 - SU(6) coupling (~ quark counting) $g_{\sigma\Lambda} = 2/3 g_{\sigma N}$
 - No ss mesons
- Proposed prescription after 2 Msun NS
 - Modify coupling constant from SU(6) value Weisenborn et al., ('11); Tsubakihara, AO, Harada ('13)
 - Introducing three-body repulsion Bednarek, et al.('11); Miyatsu, Yamamuro, Nakazato ('13)
 - Crossover transition to quark matter Masuda, Hatsuda, Takatsuka (12)

NS matter EOS with hyperons

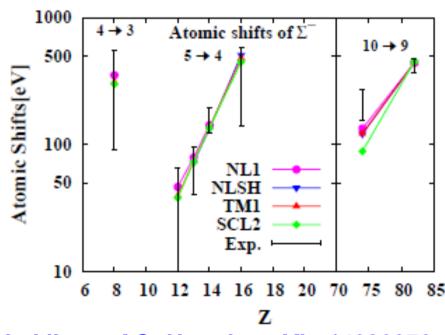

NS matter EOS with hyperons

Calculated Neutron Star Mass

Non-linear term dep. +Atomic shift fit: Tsubakihara, AO, Harada, arXiv:14020979

Three Baryon Repulsion

Nishizaki, Takatsuka, Yamamoto ('02)

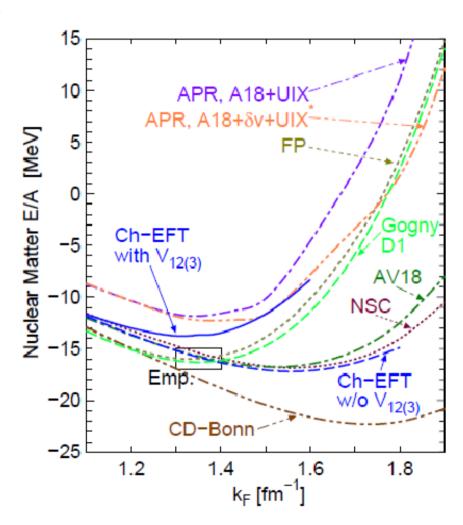


Vector coupling in RMF

- Σ atomic shift
 - Measured for isospin symmetric (O, Si) and asymmetric (W, Pb) nuclei.
 - $g_{\rho\Sigma}$ need to be much smaller than SU(6).

$$g_{\rho\Sigma} (SU(6))=2 g_{\rho N}$$

$$g_{\rho\Sigma} (AS)=(0.3\text{-}0.4)g_{\rho N}$$
Mares, Friedman,
Gal, Jennnings ('95)


Tsubakihara, AO, Harada, arXiv:14020979

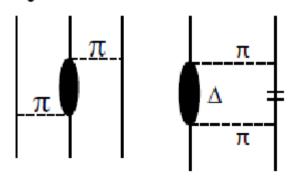
Mesons in RMF should be taken as effective field

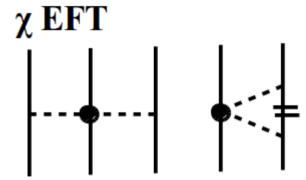
Ch-EFT EOS

- Phen. models need inputs from Experimental Data and/or Microscopic (Ab initio) Calc.
- Recent Ch-EFT EOS is promising! NN (N3LO)+3NF(N2LO) Kohno ('13)

M. Kohno, PRC 88 ('13) 064005

"Universal" mechanism of "Three-body" repulsion

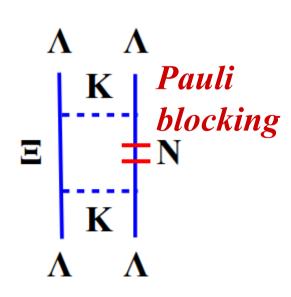

- "Universal" 3-body repulsion is necessary to support NS. Nishizaki, Takatsuka, Yamamoto ('02)
- Mechanism of "Universal" Three-Baryon Repulsion.
 - " σ "-exchange ~ two pion exch. w/ res.
 - Large attraction from two pion exchange is suppressed by the Pauli blocking in the intermediate stage. Kohno ('13)


"Universal" TBR

- Coupling to Res. (hidden DOF)
- Reduced " σ " exch. pot. ?

How about YNN or YYN?

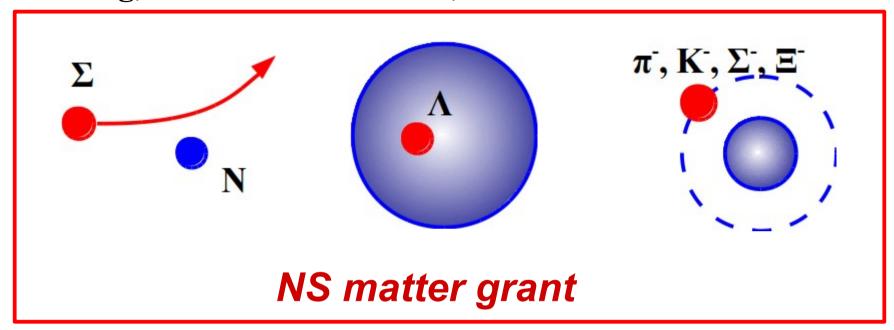
Physical Picture





AA interaction in vacuum and in nuclear medium

- Vacuum ΛΛ interaction may be theoretically accessible Lattice QCD calc. HAL QCD ('11) & NPLQCD ('11)
- In-medium $\Lambda\Lambda$ interaction may be experimentally accessible
 - Bond energy of $^6_{\Lambda\Lambda}$ He $\Delta B_{\Lambda\Lambda}$ =1.0 MeV \rightarrow 0.6 MeV
 - a_0 (Nagara fit) = -0.575 fm ($\Delta B_{\Lambda\Lambda}$ =1.0 MeV) Hiyama et al. ('02)
- **Difference of vacuum & in-medium** $\Lambda\Lambda$ int. would inform us $\Lambda\Lambda N$ int. effects.
 - ΛΛ-ΞΝ couples in vacuum
 - Coupling is suppressed in ${}^{6}_{\Lambda\Lambda}$ He


Is there Any way to access vacuum AA int. experimentally?

Interactions btw short-lived hadrons

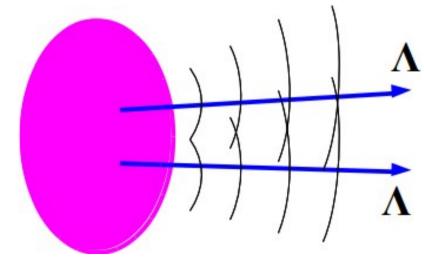
Scattering, Nuclear bound state, Atomic shift

- Exotic hadron spectroscopy
- Correlations from heavy-ion collisions
 - STAR data of ΛΛ correlation

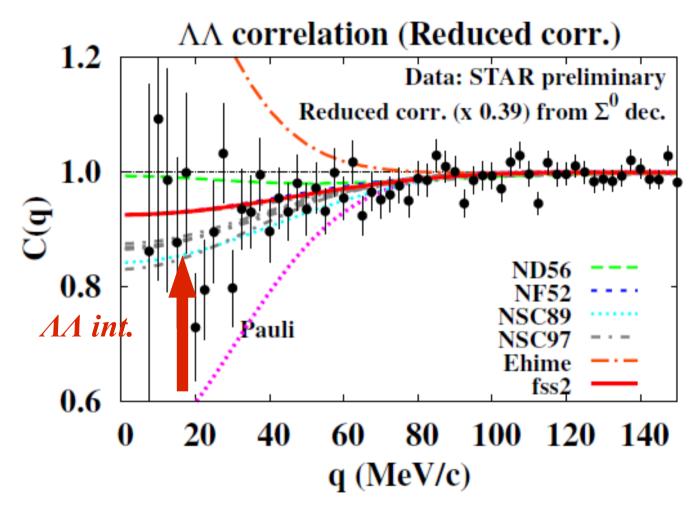
This talk

Contents

- Introduction
 - Massive NS and NS matter EOS
 - Strangeness in NS matter
 - "Universal" Three-Baryon Repulsion
- Constraint on ΛΛ interaction from HIC
 - AA correlation in heavy-ion collisions
 - ullet Constraint on $\Lambda\Lambda$ interaction from HIC data
- Discussion
 - Can we see the difference btw vacuum and in-medium $\Lambda\Lambda$ interaction ?
 - Do we see H in $\Lambda\Lambda$ correlation ?
- Summary

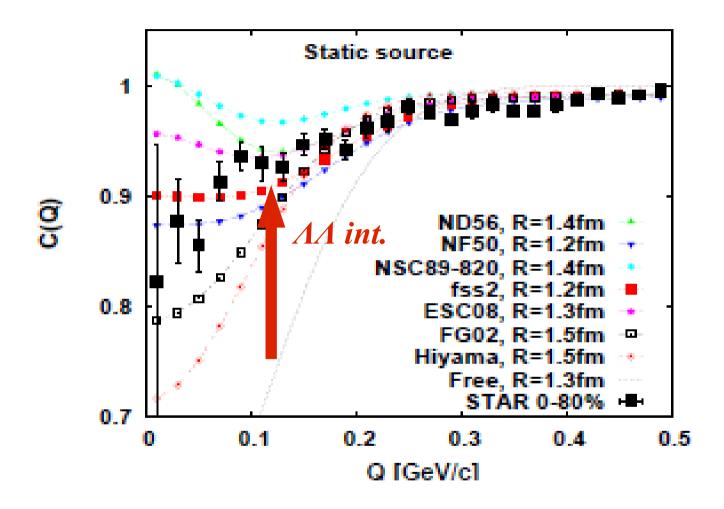

Hadron-Hadron correlation in HIC

- Hanbury-Brown and Twiss Effects
- **Correlation func.** $\sim \int$ Source x |w.f.|2
 - → If source is known, corr. fn. tells us w.f. or interaction.


Bauer, Gelbke, Pratt ('92); Lednicky ('09).

- AA correlation is measured in (K-,K+) reaction *C.J. Yoon et al.* (KEK-E522)('07); J.K.Ahn et al. (KEK-E224)
- STAR measured ΛΛ correlation at RHIC N. Shah et al. ('12)

Let's try to constrain AA interaction!


AA correlation at RHIC

Data (STAR prelim.): N. Shah et al.('12), Cal.: AO for ExHIC ('13)

AA correlation at RHIC

Data (STAR): N. Shah et al.('14, to be submitted)

Cal.: Morita et al. (to be submitted)

AA interaction models

Boson exchange potentials

- Nijmegen potentials: various versions

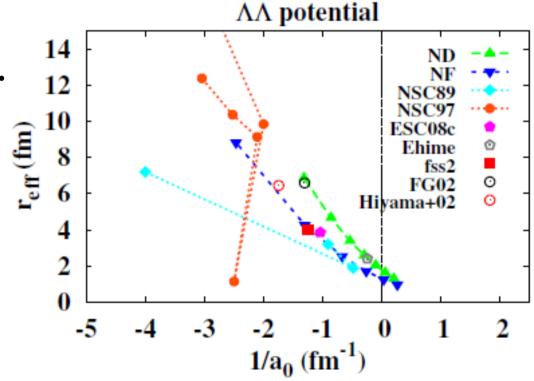
 Hard core: Nijmegen model D & F (ND, NF)

 Soft core: Nijmegen soft core '89 & '97 (NSC89, NSC97)

 Extended soft core: ESC08
- Ehime potential: would be too attractive. Ueda et al., ('98) Ehime fits old double Λ hypernucl. data, $\Delta B_{\Lambda\Lambda}$ =4 MeV
- Quark cluster model
 - fss2

 Short range repulsion from quark Pauli blocking & OGE

 Core is softer due to non-locality
- Modified Nijmegen potentials fitting Nagara data.
 - Filikhin, Gal ('02), Hiyama et al.('02)
 - Potential Fitting Nagara data $\Delta B_{\Lambda\Lambda} = 1.0 \text{ MeV}$



AA interaction models

Low energy scattering parameters, (a_0, r_{eff})

$$k \cot \delta = -\frac{1}{a_0} + \frac{1}{2} r_{\text{eff}} k^2 + O(k^4)$$

- $a_0 > 0$ (bound region), $a_0 < 0$ (no bound region)
- Potential parameters
 - Hard core radius (ND, NF), cutoff mass (NSC89), spin dependence (NSC97a-f).

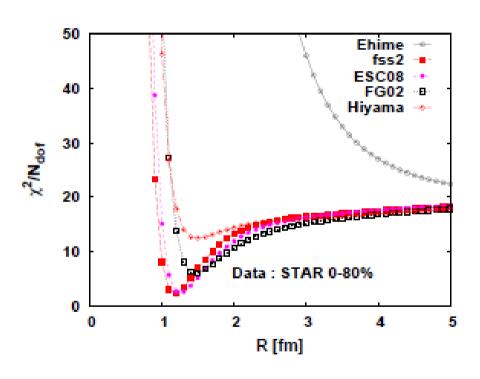
11 A correlation function

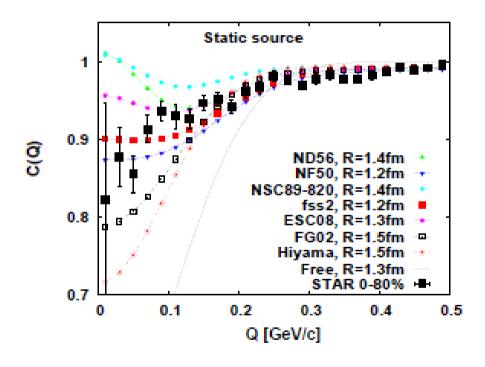
Two particle correlation function

Koonin ('77)

$$C_2(\boldsymbol{Q},\boldsymbol{K}) = \frac{W_2(k_1,k_2)}{W_1(k_1)W_1(k_2)} = \frac{\int d^4x_1d^4x_2S(x_1,\boldsymbol{K})S(x_2,\boldsymbol{K})|\Psi_{12}(\boldsymbol{Q},x_1-x_2-(t_2-t_1)\boldsymbol{K}/m)|^2}{\int d^4x_1d^4x_2S(x_1,k_1)S(x_1,k_2)}$$

- $W_1(k)$, $W_2(k_1,k_2)$: 1 & 2 partcl. dist., S(x, k): phase spc. dist. $Q=(k_1-k_2)$, $K=(k_1+k_2)/2$
- Wave fn. Ψ (assumption: only the s-wave partial wave is modified.)


$$\begin{aligned} \Psi_{s} &= \sqrt{2} \left[\cos \mathbf{Q} \cdot \mathbf{r} / 2 + \chi_{Q}(r) - j_{0}(\mathbf{Q}r / 2) \right] \\ \Psi_{t} &= \sqrt{2} i \sin \mathbf{Q} \cdot \mathbf{r} / 2 \\ |\Psi_{12}|^{2} &= 1 - \frac{1}{2} \cos \mathbf{Q} \cdot \mathbf{r} + \cos \left(\mathbf{Q} \cdot \mathbf{r} / 2 \right) \Delta \chi_{Q}(r) + \left[\Delta \chi_{Q}(r) \right]^{2} \\ \Delta \chi_{Q}(r) &= \chi_{Q}(r) - j_{0}(\mathbf{Q}r / 2) \end{aligned}$$



Static Spherical Source

Correlation fn. with static, spherical gaussian source

$$C_{\Lambda\Lambda}(Q) \simeq 1 - \frac{1}{2} \exp(-Q^2 R^2) + \frac{1}{2} \int dr S_{12}(r) (|\chi_Q(r)|^2 - |j_0(Qr/2)|^2)$$

Morita, Furumoto, AO (to be submitted)

Geometry & Flow Effects

Boost invariant source with flow effects

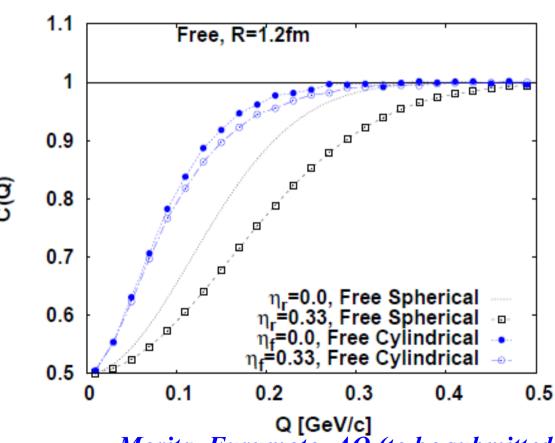
S. Chapman, P. Scotto, U. Heinz, Heavy Ion Phys. 1, 1 (1995).

$$S(x, k) = \frac{m_T \cosh(y - Y_L)}{(2\pi)^3 \sqrt{2\pi(\Delta \tau)^2}} n_f(u \cdot k, T) \exp\left[-\frac{(\tau - \tau_0)}{2(\Delta \tau)^2} - \frac{x^2 + y^2}{2R^2}\right]$$

Fluid velocity

$$u^{t} = \cosh Y_{T} \cosh Y_{L}$$

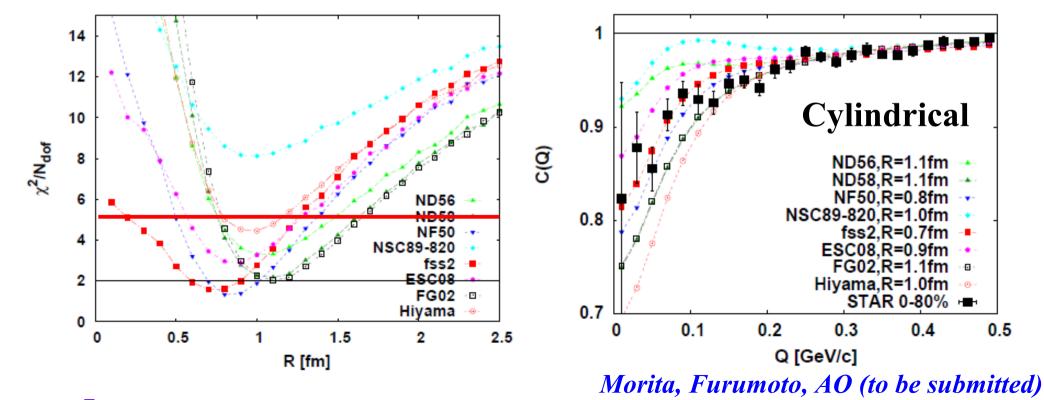
$$u^{z} = \cosh Y_{T} \sinh Y_{L}$$


$$u^{x} = \sinh Y_{T} \cos \phi$$

$$u^{y} = \sinh Y_{T} \sin \phi.$$

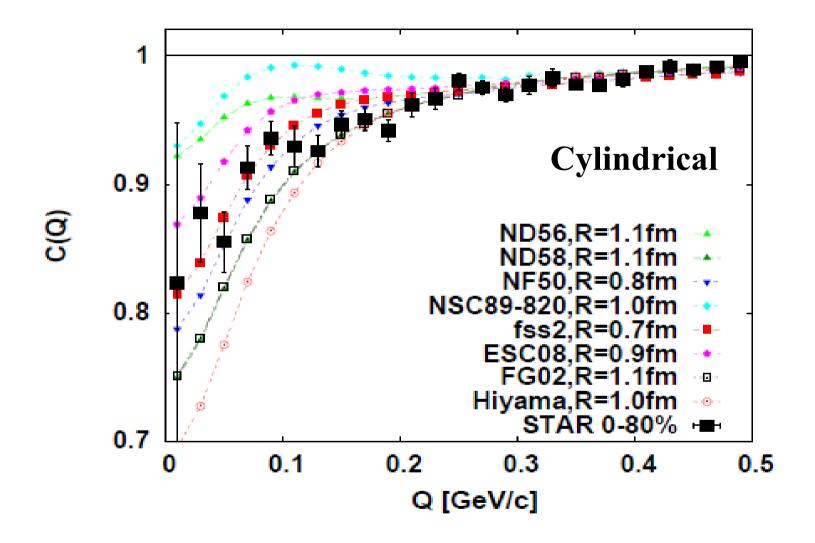
$$Y_{L} = \eta_{s} = \frac{1}{2} \ln \frac{t+z}{t-z}$$

$$Y_{T} = \eta_{f} \frac{r_{T}}{R}$$

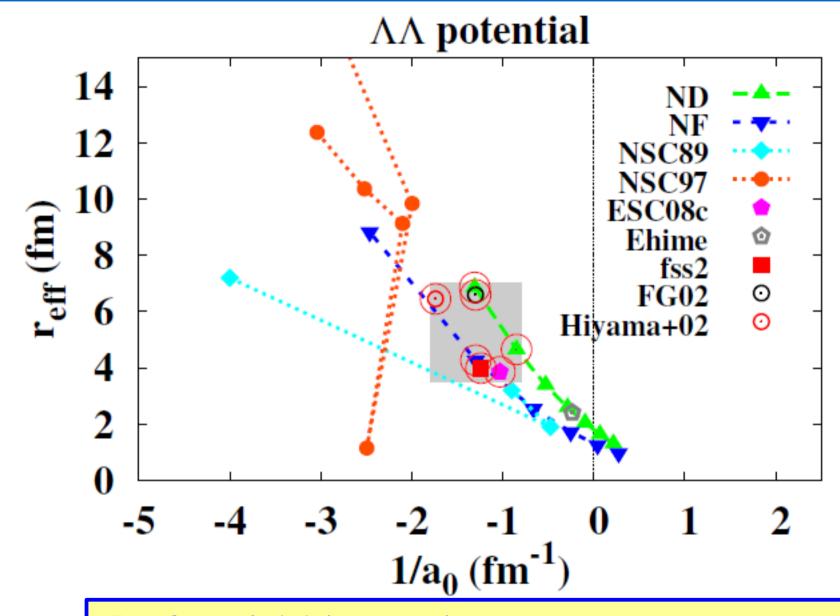

Transverse flow $\eta_f = 0.33$ (from m_T spectrum)

AA correlation with flow effects

Results with flow effects


- Optimal transverse source size $R \sim (0.8-1.1)$ fm
- HBT source size is interpreted as the "homogeneity length", but it is still too small compared with the proton source size, $R_{\rm p} \sim (2-4) \text{ fm}.$

0.5

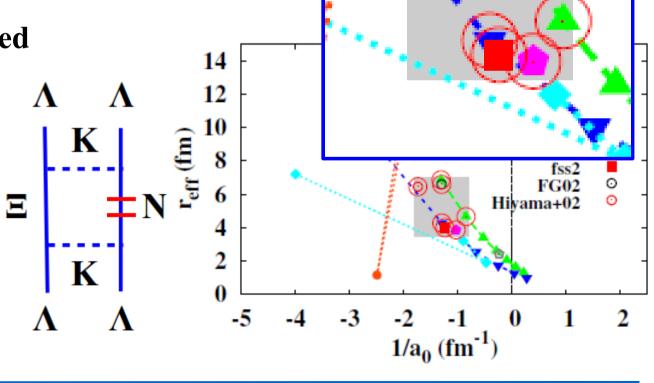

11 A correlation from Cylindrical Source with Flow

Morita, Furumoto, AO (to be submitted)

Preferred AA interactions

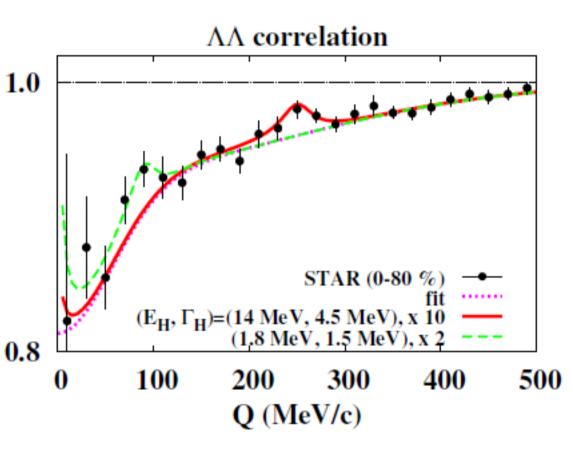
Preferred AA interaction parameters $-1.8 \text{ fm}^{-1} < 1/a_0 < -0.8 \text{ fm}^{-1}$, $3.5 \text{ fm} < r_{\text{eff}} < 7 \text{ fm}$

Contents


- Introduction
 - Massive NS and NS matter EOS
 - Strangeness in NS matter
 - "Universal" Three-Baryon Repulsion
- \blacksquare Constraint on $\Lambda\Lambda$ interaction from HIC
 - AA correlation in heavy-ion collisions
 - ullet Constraint on $\Lambda\Lambda$ interaction from HIC data
- Discussion
 - Can we see the difference btw vacuum and in-medium $\Lambda\Lambda$ interaction ?
 - Do we see H in $\Lambda\Lambda$ correlation ?
- Summary

Comparison with In-medium interaction.

- **Δ**Λ interactions from Nagara event ($\Delta B_{\Lambda\Lambda} = 1.0 \text{ MeV}$)
 - Hiyama, Kamimura, Motoba, Yamada, Yamamoto ('02)


$$(a_0, r_{eff}) = (-0.575 \text{ fm}, 6.45 \text{ fm})$$

- Filikhin, Gal ('02) $(a_0, r_{eff}) = (-0.77 \text{ fm}, 6.59 \text{ fm})$
- Ξ mass is updated by PDG
 - Bond energy is updated $\Delta B_{\Lambda\Lambda} = 0.67 \text{ MeV}$ $\rightarrow a_0 \text{ will be reduced}$ by 10-20 % $a_0 \sim -(0.5-0.65) \text{ fm}$

Do we see H as a resonance?

- Deeply bound H is ruled out by double Λ hypernuclear mass. $M_H > 2 M_{\Lambda} 6.91 \text{ MeV}$
- Existence of H as a resonance is not ruled out.
 - \rightarrow Let's try to find it!
- Procedure
 - Assume the bump comes from H, and give (E_H, Γ_H) .
 - Compare the bump height with statistical model yield.
 - If H exists at low E (E=(1-2) MeV), we can find the signal by reducing the error by a factor of two.

Morita, Furumoto, AO (to be submitted)

Other source of correlation?

- \blacksquare $\Lambda\Lambda$ correlation would be modified by
 - Feed down effects from Ξ and Σ^0 decay,

 $\Xi^{-} \rightarrow \pi^{-} \Lambda$ (detectable)

 $\Sigma^0 \to \gamma \Lambda$ (will be detectable at LHC (Kwon et al.)) Σ^0 effects can be taken are of by multiplying 0.41 to (C-1), and preferred V($\Lambda\Lambda$) are similar to the present result.

• If feed down Λ is included, the correlation is affected by the parent pair interaction.

E.g. pp correlation is significantly affected by $V(p\Lambda)$. $(\Lambda \to \pi^- p \text{ and no Coulomb suppression in } p\Lambda \text{ channel.})$

Since there is no Coulomb suppression in $\Lambda\Lambda$ pair, parent pair interaction effects may be less serious than in pp correlation.

In Further investigation is necessary to pin down $\Lambda\Lambda$ interaction more precisely.

Summary

- We need additional repulsion to solve massive neutron star puzzle related to strangeness hadrons.
 - Need exp. data and ab initio calc. J-PARC exp. / Lattice BB and BBB int. / Ch-EFT
- We have constrained $\Lambda\Lambda$ low energy scattering parameters using $\Lambda\Lambda$ correlation data from STAR collaboration.
 - Optimal source size & flow parameter are fixed by using correlation and pT spectrum.
 - Preferred scattering parameters are found to be in the range, $-1.8~\rm fm^{-1} < 1/a_0 < -0.8~\rm fm^{-1}$, 3.5 fm < $r_{\rm eff} < 7~\rm fm$
 - Other mechanisms may need to be taken care of.
- Information on ΛΛN may be accessible via correlation in HIC
 - In-medium $\Lambda\Lambda$ interaction seems to be weaker than vacuum interaction.

Thank you

Where is the S=-2 dibaryon (uuddss) "H"?

ΞN

E522

 $\Lambda\Lambda$

Jaffe

(1974)

Nagara

- Jaffe's prediction (1977)
 - \rightarrow 80 MeV below $\Lambda\Lambda$
 - (strong attraction from color mag. int.)
- Double hypernuclei _{ΛΛ} He (Nagara)
 - → No deeply bound "H"
- Resonance or Bound "H"?
 - KEK-E522 (Yoon et al., ('07))
 - \rightarrow "bump" at $E_{\Lambda\Lambda} \sim 15 \text{ MeV}$
 - Lattice QCD (HAL QCD & NPLQCD)
 - → bound H at large ud quark mass
- How about HIC ?
 - RHIC & LHC = Hadron Factory including Exotics
 - "H" would be formed as frequently as stat. model predicts. Cho, Furumoto, Hyodo, Jido, Ko, Lee, Nielsen, AO, Sekihara, Yasui, Yazaki

-(FxH16sCollab.), PRL('11)212001; arXiv:t:1107.1302

Ohnishi @ QH seminar, June 27, 2014 31

 4 He+ $\Lambda\Lambda$

~ 6.91 MeV

~ 80 MeV

Nagara event

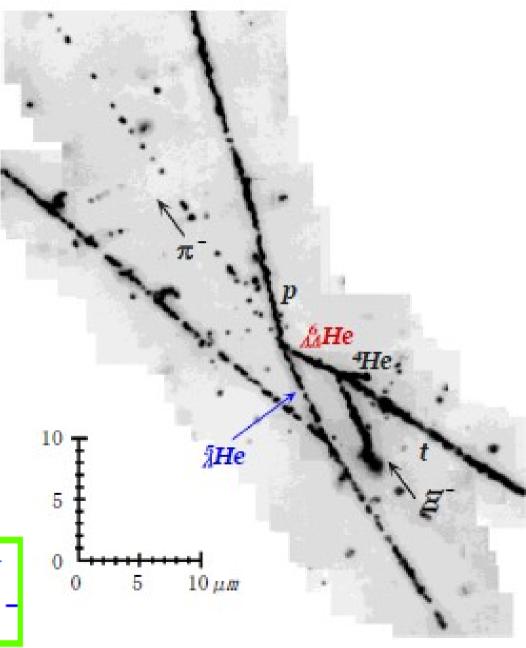
⁶He hypernuclei

Takahashi et al., PRL87('01)212502

(KEK-E373 experiment)

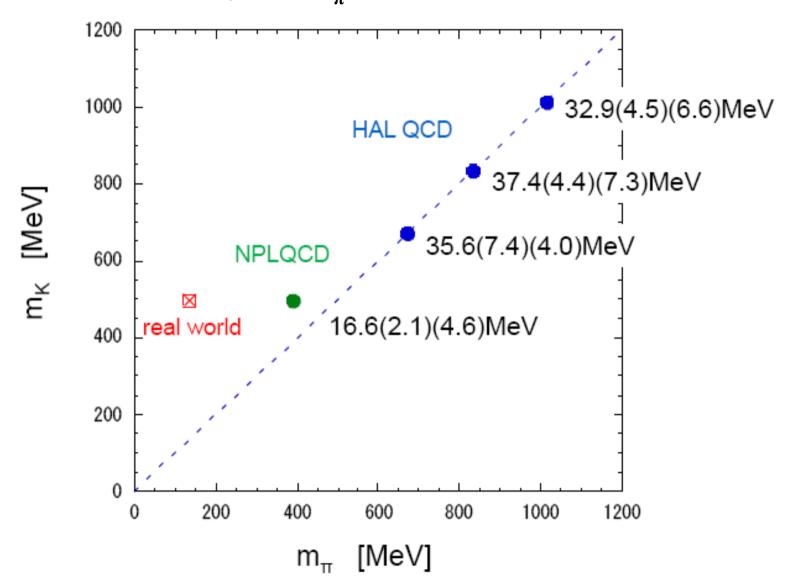
Lambpha

$$m(^{6}_{MA}He) = 5951.82 \pm 0.54 MeV$$


$$B_{\Lambda\Lambda} = 7.25 \pm 0.19^{+0.18}_{-0.11} \text{MeV}$$

$$\Delta B_{\Lambda\Lambda} = 1.01 \pm 0.20^{+0.18}_{-0.11} \text{MeV}$$

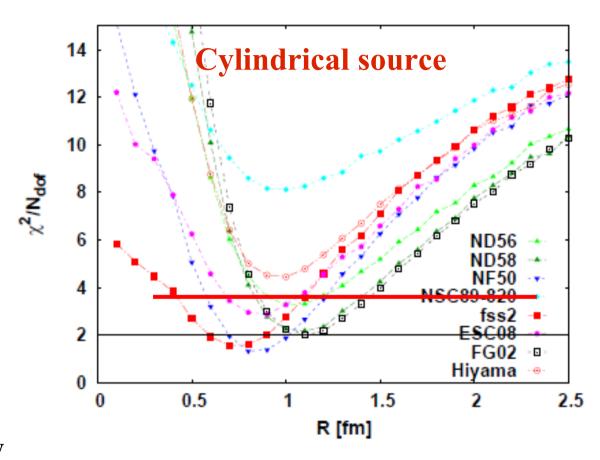
(assumed $B_{\Xi}^- = 0.13 \text{ MeV}$)


$$\rightarrow$$
 B _{$\Lambda\Lambda$} = 6.91 MeV
(PDG modified(updated)
 Ξ ⁻ mass)

$$\mathcal{Z}^{-}$$
 + 12 C $\longrightarrow {}^{6}_{\Lambda\Lambda}$ He + 4 He + t
 ${}^{6}_{\Lambda\Lambda}$ He $\longrightarrow {}^{5}_{\Lambda}$ He + $p + \pi^{-}$

Lattice QCD predicts bound "H"

• "H" bounds with heavy π ($M_{\pi} > 400$ MeV)


NPLQCD Collab., PRL 106 (2011) 162001; HAL QCD Collab., PRL 106 (2011) 162002

AA interaction and correlation

\triangle $\Lambda\Lambda$ int.

- Nijmegen models Rijken et al.
- quark model (fss2)Fujiwara et al. ('01)
- Nagara fit Filikhin, Gal ('02); Hiyama et al.('02)
- Source models
 - sph. static source
 - cylindrical source w/ flow

K. Morita, AO, T. Furumoto (in prep.)

