Lambda-Lambda interaction from two-particle intensity correlation in relativistic heavy-ion collisions

Akira Ohnishi¹

in collaobration with Kenji Morita¹²³, Takenori Furumoto⁴

1. YITP, Kyoto Univ., 2. FIAS, 3. U. Wroclaw, 4. Ichinoseki CT

Molecule-type workshop on "Selected topics in the physics of the Quark-Gluon Plasma and Ultrarelativistic Heavy Ion Collisions" 2015/09/07 --- 2015/09/26

based on K. Morita, T. Furumoto, AO, Phys. Rev. C91 (2015), 024916 [arXiv:1408.6682] Same talk as HYP2015 talk by AO

AA interaction & Exotic Hadron (H particle)

Jaffe ('77)

- Deeply bound H ?
 - Strong Attraction from Color Mag. Int. \rightarrow 80 MeV below $\Lambda\Lambda$
- No observation for a long time.
- Why there is no bound state ?
 - Repulsive Instanton Ind. Int. Oka, Takeuchi ('91)
- Nagara event ⁶_{ΛΛ} He Takahashi et al. ('01)
 - No deeply bound "H", Weakly Att. ΛΛ int.
- Resonance or Bound "H" ?
 - 2 σ "bump" at E_{AA} ~ 15 MeV *Yoon et al.(KEK-E522) ('07)*
 - Bound H at large ud quark masses

HAL QCD & NPLQCD ('11), Haidenbauer, Meissner ('11)

A A interaction models

Boson exchange potential

Nijmegen potentials (ND, NF, NSC89, NSC97, ESC08) *Nagels+('77, '79), Maessen+('89), Rijken+('99,'10)* Ehime *Ueda et al. ('98)*

- Quark model interaction: fss2 Fujiwara et al.('07)
- Tuned potential to Nagara

Filikhin, Gal ('02) (FG), Hiyama et al. ('02, '10)(HKMYY)

A A interaction and Neutron Star

- Hyperon superfluidity puzzle
 - "Exotic" components are necessary to explain fast cooling of some of NSs.
 - "Exotic" superfluidity is necessary to forbid too fast cooling.
 - Nagara-fit ΛΛ interaction is too weak for Λ superfluidity.
- Massive Neutron Star Puzzle
 - Hyperons should appear in dense matter.
 - $\bullet\,$ EOSs w/ Y are too soft to support 2 $M_\odot\,NS$
 - Three-body repulsion involving Y may help to stiffen EOS at high density. NS session (Gandolfi, Bombaci, Yamamoto, Takatsuka, Togashi, Lonardoni, Muto, Miyatsu,

Nakamoto)Kohno ('13) / Myint, Shinmura, Akaishi

(03) / Machleidt.

T. Takatsuka, R. Tamagaki, PTP 112('04)37

Impact of AA interaction

- ΛΛ interaction is relevant to the existence of H dibaryon.
 - One of the long-standing problem in hadron physics.
- ΛΛ interaction is important to understand BB interaction models.
 - No pion exchange \rightarrow middle and core range int. are visible.
 - No quark pauli blocking in the flavor singlet (H) channel.
- ΛΛ and ΛΛΝ interaction is important to neutron stars.
 - Hypern superfluidity is preferred to explain NS cooling.
 - 3-body force including Y is necessary to support 2 M_{\odot} NS. $V_{\Lambda\Lambda}$ in vacuum & medium $\rightarrow V_{\Lambda\Lambda N}$

Other observables than double hypernuclei ? → ΛΛ intensity correlation from heavy-ion collisions Recent data by STAR Collab. Talk by N. Shah (Adamczyk et al., PRL 114 ('15) 022301.)

Contents

- Introduction
- Λ Λ correlation and interaction from heavy-ion collisions
 K. Morita, T. Furumoto, AO, PRC
 - Comparison of correlation function obtained with various ΛΛ model interactions with STAR data.
 - Expansion effects, Feeddown effects, and Residual source effects
 - Favored ΛΛ interaction
- ΛΛ scattering length: Negative or Positive ?
 - STAR analysis: $a_0 > 0$, MFO analysis: $a_0 < 0$
 - Re-analysis based on Lednicky-Lyuboshits '81 model
- **Summary**

K. Morita, T. Furumoto, AO, Phys. Rev. C91 (2015), 024916 [arXiv:1408.6682]

AA correlation in HIC

- Merit of HIC to measure ΛΛ correlation
 - Source is "Simple and Clean" !
 T, μ, flow, size, ... are well-analyzed.
 - Nearly Stat. prod.
 Many exotics will be produced.
 Schaffner-Bielich, Mattiello, Sorge ('00), Cho et al. (ExHIC Collab.) ('11)
 - Discovery of "H" and/or Constraint on $\Lambda\Lambda$ int. Bound state exhaust the low q strength \rightarrow suppressed C(q).

AA correlation in HIC and AA interaction

Two particle correlation from chaotic source Bauer, Gelbke, Pratt ('92)

$$C_{\Lambda\Lambda}(q) = \frac{\int dx_1 dx_2 S(x_1, p+q) S(x_2, p-q) |\psi^{(-)}(x_{12}, q)|^2}{\int dx_1 dx_2 S(x_1, p+q) S(x_2, p-q)}$$

Static spherical source, s-wave only s-wave w.f. enh. $C_{\Lambda\Lambda}(q) \simeq 1 - \frac{1}{2} \exp(-4q^2 R^2) + \frac{1}{2} \int dr S_{12}(r) (|\chi_0(r)|^2 - |j_0(qr)|^2)$ HBT

q=(p_1 - p_2)/2, χ_0 : s-wave wf, $S_{12}(x)=r^2 \exp(-r^2/4R^2)/2R^3\sqrt{\pi}$

HBT term: Suppression due to anti-symmetryzation for Fermions
 0 x 3/4 (triplet) + 2 x 1/4 (singlet) = 1/2
 Hanbury Brown, Twiss ('56),

Goldhaber, Goldhaber, Lee, Pais ('60)

Enhancement of wf by ΛΛ attraction

Correlation function and scattering length

- **a** Low E scatt. is mainly determined by the scattering length (a_0) q cot $\delta = \frac{1}{a_0} + r_{eff} q^2/2 + O(q^4)$ Nuclear phys. convention
 - Negative a₀ : enhanced correlation
 - Positive a_0 : suppressed correlation w/ bound state \rightarrow scatt. wf has a node w/o bound state \rightarrow repulsion suppress wf

Source models

- Static & Spherical source
 - Source size R = (1-1.5) fm, $\chi^2/DOF \sim 2$
- Cylindrical source
 - Bjorken expansion in long. direction
 - Transverse flow from pT spectrum

Source size R = (0.7-1.1) fm, χ2/DOF ~ 1.5

Additional Source

Feed down effects

$$C_{\text{corr}}(Q) = 1 + \lambda(C_{\text{bare}}(Q) - 1)$$

 $\lambda = Purity of \Lambda\Lambda pair$

- Short-lived $Y^* \rightarrow mod.$ of source fn.
- $\Xi \rightarrow \Lambda \pi$ can be excluded (c τ =8.71 cm)
- $\Sigma^0 \to \Lambda \gamma$ is difficult to reject
- Data based purity λ=(0.67)² Σ⁰/Λ=0.278 (p+Be, 28.5 GeV/c) Sullivan et al. ('87) Ξ/Λ = 15 % (RHIC)
- "Residual" source
 - High-momentum tail $\rightarrow R_{res} \sim 0.5$ fm (STAR collab.)

ΛΛ interaction from ΛΛ correlation at RHIC

- HBT + ΛΛ int. + Expansion + Feed down + "Residual" source
 - $1/a_0 < -0.8 \text{ fm}^{-1}$
 - Source size dependence is small, $\chi^2/DOF \sim 1$
- **Question:** STAR analysis $a_0 = 1.10 \pm 0.37$ fm > 0

K.Morita, T.Furumoto, AO, PRC91('15)024916 [arXiv:1408.6682] Data: Adamczyk et al. (STAR Collaboration), PRL 114 ('15) 022301.

Λ Λ scattering length Positive or Negative ?

STAR collab. analysis

- Lednicky-Lyuboshits (LL '81) model R. Lednicky, V. L. Lyuboshits, Sov.J.Nucl.Phys.35('82)770; Yad.Fiz.35 ('81) 1316.
 - Analytic model including a₀ and r_{eff}.
- Intercept (pair purity) parameter is treated as a free parameter
- **STAR Collab. analysis implies positive scatt. length.** $a_0 = 1.10 \text{ fm}$, $r_{\text{eff}} = 8.52 \text{ fm}$, $\lambda = 0.18$

15

Lednicky-Lyuboshits (LL '81) model

Lednicky-Lyuboshits (LL '81) model

R. Lednicky, V. L. Lyuboshits, Sov.J.Nucl.Phys.35('82)770; Yad.Fiz.35 ('81) 1316.

Analytic model including FSI effects

$$\begin{split} C(Q) = N \left[1 + \lambda \left(-\exp(-R^2 Q^2)/2 + C_{\rm int}(Q) - 1 \right) + a_{\rm res} \exp(-R_{\rm res}^2 Q^2) \right] \\ C_{\rm int}(Q) = 1 + \frac{|f(k)|^2}{4R^2} \left(1 - \frac{r_{\rm eff}}{2\sqrt{\pi}R} \right) + \frac{\operatorname{Re}f(k)}{\sqrt{\pi}R} F_1(QR) - \frac{\operatorname{Im}f(k)}{2R} F_2(QR) \\ f(k) = \left(-1/a_0 + r_{\rm eff}k^2/2 - ik \right)^{-1} \quad (k = Q/2) \quad \text{scattering amp.} \\ F_1(z) = \int 0^z e^{x^2 - z^2}/z , \quad F_2(z) = (1 - e^{-z^2})/z \\ k \cot \delta = -\frac{1}{a_0} + \frac{1}{2} r_{\rm eff}k^2 + \mathcal{O}(k^4) \qquad \text{phase shift} \end{split}$$

Let us examine LL '81 model results with fixed λ !

$a_0(\Lambda\Lambda)$: Positive or Negative ?

- **Key parameter = intercept parameter** λ
 - $\lambda = \text{free parameter} \sim 0.18 \rightarrow \text{positive } a_0 \text{ at } \chi^2 \text{ min.}$ ($\chi^2/\text{DOF} \sim 0.56$)
 - Measured Σ^0 / Λ ratio $\lambda = (\Lambda / (\Lambda + \Sigma^0))^2 \sim (0.67)^2 \rightarrow \text{negative } a_0 \text{ at } \chi^2 \text{ min.}$ $(\chi^2/\text{DOF} \sim 0.65)$

a_0 ($\Lambda\Lambda$): Positive or Negative ?

- χ² analysis
 - Gradient method (gnuplot) & Markov Chain MC (MCMC) in LL '81 model
 - Free λ result ~ STAR ('15) analysis : $a_0 > 0$
 - Fixed λ result ~ Our analysis : $a_0 < 0$

What is the origin of the long tail ?

- Do we have a physical origin ?
- Two source model + LL '81 model

$$S_{12}(\mathbf{x}) = \frac{w}{(2R_1\sqrt{\pi})^3} \exp\left(-\frac{x^2}{4R_1^2}\right) + \frac{1-w}{(2R_2\sqrt{\pi})^3} \exp\left(-\frac{x^2}{4R_2^2}\right)$$

 Fix Λ Λ interaction, and obtain R₁ and R₂. R₁ = (0.65-1.30) fm R₂ = (0.33-0.54) fm for fss2, ESC08, FG, HKMYY interactions. χ²/DOF = (0.6-0.65)

19

- Λ might be produced from small tubes.
 - FSI with hot medium (~ π gas) is small for Λ

Summary

- ΛΛ intensity correlation in high-energy heavy-ion collisions has sensitivity to ΛΛ interaction.
- Our analysis of the STAR data implies that the favored ΛΛ interaction has negative scattering length (1/a₀ < -0.8 fm⁻¹, δ >0), which is consistent with the Nagara event analysis.
 - Anti-symm. + ΛΛ interaction + Expansion + Feeddown + Residual
- Difference between the STAR collab. analysis and ours lies in the assumption on the pair purity (chaoticity, intercept) parameter.
 - $\Sigma^0/\Lambda \sim 0.67$: p+Be, consistent with stat. model (T~170 MeV)
- **Further studies are necessary to pin-down** ΛΛ interaction.
 - Higher precision data are expected, Σ⁰ detection is desired, Comparison with A(K⁻⁻, K⁺)ΛΛ reaction C.J.Yoon et al.('07)/J-PARC
- We can access other hh interactions using correlations.
 - **ON** interaction from ΩN correlation *K*. *Morita's talk*

Thank you !

Nuclear Physics, Compact Stars, and Compact-star Mergers 2016 (NPCSM 2016)

Dates :

Oct.17 (Mon.)-Nov.18 (Fri.), 2016 (2016 Fall, 5 weeks).

Organizers:

Ohnishi (YITP, co-chair), M. Shibata(YITP, co-chair), Y. Suwa(YITP, LOC), K. Morita(YITP, LOC), H.Tamura (Tohoku U.), T.Harada (Osaka EC), H.Nakada(Chiba U.), K. Iida (Kochi U.), Sekiguchi (Toho U.), K. Sumiyoshi (Numazu), Ioka(KEK), Kotake(Fukuoka U.), Sotani(NAOJ), Wanajo (RIKEN)

Previous Work (before RHIC & Nagara)

0

0

AGS, Au+Au

RHIC, Au+Au

60 80 100

trg-a (no bs)

trg-b (with bs)

40

q (MeV/c)

Hadronic transport (JAM) + Two Range Gaussian $V_{\Lambda\Lambda}$

¹²C(K⁻,K⁺)

SPS, S+S

60

20

0

2

0

0

20

40

60

q (MeV/c)

80

C(q)

40 O(d)

• w/ bound state \rightarrow w.f. node suppresses C(c

o...a...

20

0

*Λ*Λ correlation from (*K*⁻,*K*⁺ΛΛ) reaction

Enhancement at ~ 2 M(Λ)+ 10 MeV,

Exotics from Heavy Ion Collisions

- High-Energy Heavy-Ion Collisions

 - High T & Large volume \rightarrow Abundant hadrons
 - RHIC & LHC \rightarrow Nearly 4π detector / Vertex detector
 - → Let's regard RHC & LHC as Exotic Hadron Factories
- What can we learn ? Existence, Mass, Width, Size, Interaction, ..
 - Formation mechanism of hadrons
 - = Statistical, Coalescence, Fragmentation.
 - \rightarrow Yields are sensitive to hadron size \Im in Coal.

Chen, Greco, Ko, Lee, Liu, ('04)

- Correlation func. ~ \int Source x |w.f.|²
 - → Once we know source, Corr. Func. is sensitive to w.f. and pairwise interaction.

Ohnishi @ Mol. 2015.09, Sep. 21, 2010, 1900, Japan 25

Statistica

formation

ladron

oalescen

Correlation function

$$C_{\Lambda\Lambda}(q) \simeq 1 - \frac{1}{2} \exp(-4q^2 R^2) + \frac{1}{2} \int dr S_{12}(r) (|\chi_0(r)|^2 - |j_0(qr)|^2)$$

A *A interaction models*

Boson exchange potential

Nijmegen potentials (ND, NF, NSC89, NSC97, ESC08) Nagels+('77, '79), Maessen+('89), Rijken+('99,'10) Ehime Ueda et al. ('98)

Quark model interaction: fss2 Fujiwara et al.('07)

Tuned potential to Nagara

Filikhin, Gal ('02)a0=-0.77fm, reff=6.59 fmHiyama et al. ('02)(HKMYY)a0=-0.575 fm, reff=6.45 fmHiyama et al. ('10)(HKMYY)a0=-0.44 fm, reff=10.1 fm

Tuned potential to A(K-,K+) $\Lambda\Lambda$

Gasparayan et al. ('12)(GHH) a0=-1.2 fm A.M.Gasparyan, J. Haidenbauer, C. Hanhart. PRC85('12)015204.

Nagara event

⁶He hypernuclei

Takahashi et al., PRL87('01)212502 (KEK-E373 experiment) Lambpha

 $m({}_{AA}^{6}He) = 5951.82 \pm 0.54 \text{MeV}$ $B_{AA} = 7.25 \pm 0.19 {}_{-0.11}^{+0.18} \text{MeV}$ $\Delta B_{AA} = 1.01 \pm 0.20 {}_{-0.11}^{+0.18} \text{MeV}$ (assumed $B_{\Xi}^{-} = 0.13 \text{ MeV}$)

 \rightarrow B_{AA}= 6.91 MeV (PDG modified(updated) Ξ^{-} mass)

$$\overline{Z}^{-} + {}^{12}C \longrightarrow {}^{6}_{\Lambda\Lambda}He + {}^{4}He + t$$
$${}^{6}_{\Lambda\Lambda}He \longrightarrow {}^{5}_{\Lambda}He + p + \pi^{-}$$

Lattice QCD predicts bound "H"

• "H" bounds with heavy π (M_{π} > 400 MeV)

NPLQCD Collab., PRL 106 (2011) 162001; HAL QCD Collab., PRL 106 (2011) 162002

Exotics from Heavy-Ion Collisions

Cho,Furumoto,Hyodo,Jido, Ko, Lee,Nielsen,AO,Sekihara,Yasui,Yazaki (ExHIC Collab.), PRL('11)212001; arXiv:t:1107.1302

Fate of the prediction

- Conjecture in 2000 Suppressed ΛΛ correlation may suggest the existence of bound H
 - Bound H → Node in scattering ΛΛ wf → suppressed correlation AO, Hirata, Nara, Shinmura, Akaishi, NPA670('00)297c [arXiv:nucl-th/9903021]; SNP2000 proc. p175.
 - When the source (homogeneity) size is small, we find a dip with/without bound state.

Source size dependence

- Larger size → Smaller Q region
- No dip structure for larger size.
 (Anti-symmetrization effects > Interaction effects)
 → Sensitive only to the scattering length.

$$C(Q \rightarrow 0) \simeq \frac{1}{2} - \frac{2}{\sqrt{\pi}} \frac{a_0}{R} + \left(\frac{a_0}{R}\right)^2 \qquad ($$

(if "Interaction Range" << R)

A. Ohnishi @ Hyp 2015, Sep. 8, 2015, Sendai, Japan 32

AA potential

fss2 Phase shift equivalent potential **s f**ss2

- $a_0 = -0.82$ fm, $r_{eff} = 4.1$ fm
- Nagara fit
 - Filikhin, Gal ('02) a0=-0.77 fm, reff=6.59 fm
 - Hiyama et al. ('02)(HKMYY) a0=-0.575 fm, reff=6.45 fm
 - Hiyama et al. ('10)(HKMYY) a0=-0.44 fm, reff=10.1 fm

Y. Fujiwara, Y. Suzuki, C. Nakamoto, Prog.Part.Nucl.Phys. 58 (2007) 439-520

Toward AA correlation at RHIC: Source Size

- Source size : R = (2-4.5) fm
 - Smaller than last collision point dist. results in hadron cascade (JAM)
 - \rightarrow Interaction in the early stage at RHIC
 - Smaller than π , K homogeneity length \rightarrow Further smaller for Λ ?

A. Ohnishi @ Hyp 2015, Sep. 8, 2015, Sendai, Japan 34

Toward A A correlation at RHIC: AA interaction

- ΛΛ interaction
 - After Nagara, "plausible" $\Lambda\Lambda$ interaction becomes weaker. Bond energy $\Delta B_{\Lambda\Lambda}$ =0.7 MeV (old guess=(3-6) MeV)
 - fss2 (quark model interaction): No bound state *Y. Fujiwara, M. Kohno, C. Nakamoto, Y. Suzuki, PRC64('01)054001* Bond energy $\Delta B_{\Lambda\Lambda} = (1.2-1.9)$ MeV (depending on ΛN int.)
 - Nijmegen model D (boson exch., Rc=0.46 fm): with bound state M.M. Nagels, T.A. Rijken, J.J. de Swart, PRD15('77)2547
 B.E.(H) ~ 1.6 MeV
- **Resonance "H" btw** $\Lambda\Lambda$ Ξ N threshold \rightarrow Couple channel calc. is required
 - One range gaussian coupling potential is assumed.
 - EN potential (diagonal) effects on C(q) is almost negligible.

Coalescence / Statistical Ratio

Ŧ

Exotic Interactions from Heavy Ion Collisions --- H particle and A A interaction ---

AA interaction

- Type of ΛΛ interactoin
 - Meson exchange models: Nijmegen model D, F, Soft Core (89, 97), ESC08

Nagels, Rijken, de Swart ('77, '79), Maessen, Rijken, de Swart ('89), Rijken, Stoks, Yamamoto ('99); Rijken, Nagels, Yamamoto ('10).

- Quark cluster model interaction: fss2 Fujiwara, Fujita, Kohno, Nakamoto, Suzuki ('00)
- Phenomenological model: Ehime T. Ueda et al. ('99).

Flow Effects

- **Too small source size** ~ 1.7 fm with Σ^0 feed down effects ?
- Flow effects make the "apparent" size smaller.
 - Relative momentum is enhanced by the flow.
 → Actual size ~ 3 fm (consistent with proton source size)

Transverse rapidity, $Y_T = \eta_f r_T / R$ Morita

Summary

- Various exotic hadrons will be formed in heavy ion collisions, and it is the right time to search them.
 - Extended hadron molecule production is enhanced in HICs.
 - Compact multiquark states may be suppressed in HICs.
 - Systematic study of exotics from e⁺e⁻ reaction may be promising.
- ΛΛ correlation observed at RHIC is useful to distinguish proposed ΛΛ potentials.

N.Shah et al. (STAR Collab.), Acta Phys. Pol. Suppl. 5 ('12) 593.

- Preferred ΛΛ interactions have 1/a₀ < -0.8 fm⁻¹, r_{eff} > 3 fm. Weakly attractive. Consistent with Nagara event (a₀=-(0.7-1.3) fm) *E. Hiyama et al. PRC66('02)024007; A.M.Gasparyan et al. PRC85('12)015204.*
- Source size is R ~ 3 fm, if we take account the flow effects.
 Consistent with proton source size (2.5-4) fm (STAR preliminary).
- Existence of resonance "H" requires higher statistics.

Y P (and hh) correlations would be measurable in HIC. A. Ohnishi @ Mol. 2015.09, Sep. 21, 2015, Kyoto, Japan 40

Coupling Effects

- **Coupled channels effects with ΞN channel is considered.**
 - Coupling with EN channel suppresses C(q) at low q. (~ Imag. pot.)
 - Unreasonably large coupling would meaningfully modify C(q).

Source models

- Static & Spherical source
- Cylindrical model
 - Bjorken expansion in long. direction
 - Transverse flow from pT spectrum
- Cylindrical + Feed down (Σ0) + Residual

Where is the S=-2 dibaryon (uuddss) "H"?

- RHIC & LHC = Hadron Factory including Exotics
- "H" would be formed as frequently as stat. model predicts. Cho, Furumoto, Hyodo, Jido, Ko, Lee, Nielsen, AO, Sekihara, Yasui, Yazaki (ExHIC Collab.), PRL('11)212001; arXiv:t:1107.1302

AA correlation in HIC

- Merit of HIC to measure ΛΛ correlation
 - Source is "simple and clean" !
 T, μ, flow, size, ... are well-analyzed.
 - Source size is big and probes w.f. tail.
 - Discovery of "H" and/or Constraint on ΛΛ int.

Gaussian Source + s-wave int.

c.f. P. Danielewicz; Bauer, Gelbke, Pratt, Annu. Rev. Nucl. Part. Sci. 42('92)77. $C_{\Lambda\Lambda}(q) = \frac{\int dx_1 dx_2 S(x_1, p+q) S(x_2, p-q) |\psi^{(-)}(x_{12}, q)|^2}{\int dx_1 dx_2 S(x_1, p+q) S(x_2, p-q)}$ $\simeq 1 - \frac{1}{2} \exp(-q^2 R^2) + \frac{1}{2} \int dr S_{12}(r) (|\chi_0(r)|^2 - |j_0(qr)|^2)$

 $(\chi_0 : \text{s-wave wave func.}, S_{12}(x) = (R \sqrt{\pi})^{-3} \exp(-r^2/R^2))$

A A corr. in (K-,K+) and AA reactions

Question: Can we constrain AA interaction from correlation data at RHIC ? Is the constraint consistent with AA corr. in (K-, K+) reaction ? Does H exist as a bound state or a resonance ?

- Source: Gaussian (HIC), Cascade model results (K-,K+)
- Interaction: ND, NF, NSC89, NSC97, Ehime, fss2 (two or three range gaussian fit)
- **Other channel:** $\Lambda\Lambda$ - ΞN couple channels, Σ^0 decay feed effects

AA interaction

- Type of ΛΛ interactoin
 - Meson exchange models: Nijmegen model D, F, Soft Core (89, 97) Nagels, Rijken, de Swart ('77, '79), Maessen, Rijken, de Swart ('89), Rijken, Stoks, Yamamoto ('99)
 - Quark cluster model interaction: fss2 Fujiwara, Fujita, Kohno, Nakamoto, Suzuki ('00)
 - Phenomenological model: Ehime

Two (or three) range gaussian fit results are used in the analysis.

AA Correlation in (K-,K+) Reaction (1)

- K⁺ production mechanism
 - QF Ξ production
 - Heavy meson production and Decay Gobbi, Dover, Gal, PRC50 (1994) 1594.
 - Two step procecces Nara, AO, Harada, Engel, NPA614 (1997) 433

QF Ξ Prod.

AA Correlation in (K-,K+) Reaction (2)

<u>(</u>ht

d²σ/dΩ/dp_k

- Λ production mechanism
 - Cascade procecces
 - Evaporation from hyper compound nuclei

AO, Hirata, Nara, Shinmura, Akaishi, NPA670(2000), 297c

AO, Hirata, Nara, Shinmura, Akaishi, NPA691(2001), 242c

AA Invariant Mass Spectrum

Exotic Hadron Yields in Heavy Ion Collisions

Schematic picture of HIC

HIC picture based on the first order phase transition

• $\tau = \tau_C$, $T = T_C$, $V = V_C \rightarrow QGP$ start to hadronize (quark coal.) • $\tau = \tau_{H}$, $T = T_{H} = T_{C}$, $V = V_{H} \rightarrow$ Hadronization is over (stat. model) • $\tau = \tau_{\rm F}$, T=T_F , V=V_F \rightarrow Hadronic Freeze-out (hadron coal.) $\eta_{\rm S} = Y$ RHIC LHC Hadron $N_u = N_d$ 245662 $N_s = N_{\bar{s}}$ 150 405 $N_c = N_{\bar{c}}$ 3 20 Mixed $N_b = N_{\bar{b}} = 0.02$ 0.8 1000 fm^3 2700 fm³ V_C $T_C = T_H$ 175 MeV 175 MeVQGP

L.W.Chen, V.Greco, C.M.Ko, S.H.Lee, W.Liu, PLB 601('04)34.

Statistical Model

Statistical model

$$N_{h}^{\text{stat}} = V_{H} \frac{g_{h}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{\gamma_{h}^{-1} e^{E_{h}/T_{H}} \pm 1}$$

 $(N_h = dN_h/dy \text{ (y=rapidity)}, V_H = Chem. freeze-out vol.)$

- \rightarrow Successful to predict the hadron yield ratio at RHIC
- Fugacity factor γ
 - u,d,s: chem. equil.
 - c,b: enhanced by initial hard processes

Fugacities of c and b quarks are set to reproduce expected c and b quark numbers.

$$\gamma_h = \gamma_c^{n_c + n_{\bar{c}}} \gamma_b^{n_b + n_{\bar{b}}} e^{(\mu_B B + \mu_s S)/T_H}$$

A. Andronic, P. Braun-Munzinger, J. Stachel, NPA772('06)167.

Coalescence model

Yield = Overlap of const. dist. & Hadron intrinsic Wigner func. (Sudden approximation)

Sato, Yazaki (1984), Hwa, Yang (2003), Greco, Ko, Levai (2003), Fries, Muller, Nonaka, Bass (2003), Chen, Ko, Lee (2003)

$$N_h^{\text{coal}} = g_h \int \left[\prod_{i=1}^n \frac{1}{g_i} \frac{p_i \cdot d\sigma_i}{(2\pi)^3} \frac{\mathrm{d}^3 \mathbf{p}_i}{E_i} f(x_i, p_i) \right] \times f^W(x_1, \cdots, x_n : p_1, \cdots, p_n)$$

Dist. of constituents Intrinsic Wigner func.

- Yield in HIC
 - Quark & hadron dist. = Transverse Boltzmann + Bjorken Chen, Ko, Liu, Nielsen (2007)
 - Hadron intr. Wigner func. = s-wave and p-wave HO w.f. Kanada-Fn'vo Muller (2006)

$$N_h^{\text{coal}} \simeq g_h \prod_{j=1}^n \frac{N_j}{g_j} \prod_{i=1}^{n-1} \frac{(4\pi\sigma_i^2)^{3/2}}{V(1+2\mu_i T\sigma_i^2)} \left[\frac{4\mu_i T\sigma_i^2}{3(1+2\mu_i T\sigma_i^2)} \right]^{l_i}$$

 σ = Gaussian width, μ =reduced mass, N = constituent yield

Coalescence / Statistical Ratio

- Normal hadrons: Rcs = (0.2-2) Normal band
- Extended hadronic molecule: Large yield is expected, Rcs > 2. Λ(1405)=KN, KNN, KKN, DNN, ... (hω=(6-50) MeV)
- Compact Multiquark states will be suppressed in HICs, Rcs < 0.2 f₀/a₀(qqqq), Θ⁺(uudds), H(uuddss), Θ_{cs}(uudsc), ...

Enhancement of Hadronic Molecules: Why ?

Simple estimate: 2-body, Gaussian w.f. + Thermal dist. of constiuents

$$N_{h} \propto \int \frac{d^{D} x d^{D} p}{(2\pi\hbar)^{D}} \int f_{W}(x,p) f_{th}(x,p) = \left[\left(\frac{4}{\hbar^{2}} \right) \left((\Delta p)^{2} + \mu T \right) \left((\Delta x)^{2} + 2R^{2} \right) \right]^{-D/2}$$

Intrinsic Constituents (thermal)

Constituents (thermal)

$$f_{W}(x,p) = \left(\frac{\hbar}{\Delta x \Delta p}\right)^{D} \exp\left(-\frac{x^{2}}{2(\Delta x)^{2}} - \frac{p^{2}}{2(\Delta p)^{2}}\right), \quad f_{th}(x,p) = \left(\frac{\hbar^{2}}{2\mu TR^{2}}\right)^{D/2} \exp\left(-\frac{x^{2}}{4R^{2}} - \frac{p^{2}}{2\mu T}\right)$$

N_h is large when f_w shape is similar to f_{th} in phase space. n

$$\Delta x: \Delta p = \sqrt{2}R: \sqrt{\mu T} \rightarrow \hbar \omega = \sqrt{\hbar^2 T/2\mu R^2}$$
• Example: T=170 MeV, μ =500 MeV
(red. mass), R = 5 fm (source size)
 \rightarrow optimal $\hbar \omega \sim 16$ MeV (<< 300-500 MeV)
Large source size & Moderate T
prefer extended hadrons

Why are Multi-quark Configs. Suppressed?

 ~ 0.36

~ 0.09

1200

Hadron yield is sensitive to the structure in coal.

1 N_i $(4\pi\sigma_i^2)^{3/2}$

 $\overline{q_i} \overline{V} \overline{(1+2\mu_i T \sigma_i^2)}$

 $1 N_i 2 (4\pi\sigma_i^2)^{3/2} 2\mu_i T\sigma_i^2$

 $\overline{q_i} \overline{V} \overline{3} (1+2\mu_i T \sigma_i^2)^2$

Additional q penalty factor

s-wave

p-wave

Nonaka et al. (2004, Θ^+) Kanada-En'yo, B. Muller (2006, A(1520))⁰⁰⁰ Large V disfavors multi-quarks !

STAR data (2003): $N(f_0(980)) \sim 8.4$ [$f_0(980)/\rho^0 \sim 0.2$, stat. $N(\rho^0) \sim 42$] Stat: 5.6, 2q:0.76-3.8, 4q:0.1, Mol: 13 \rightarrow Tetra-quark picture

STAR Preliminary

Au+Au 40%-80%

Sum

–K⁰

---- (1)

Nucl. Phys. A 715,462 (2003).