Directed flow in heavy-ion collisions and softening of equation of state

Akira Ohnishi (YITP, Kyoto U.)

CPOD 2016 (Critical Point and Onset of Deconfinement 2016) Wrocław, Poland, May 30th - June 4th, 2016

Y. Nara, A. Ohnishi, arXiv:1512.06299 [nucl-th] (QM2015 proc.) Y. Nara, A. Ohnishi, H. Stoecker, arXiv:1601.07692 [hep-ph]

QCD Phase Diagram

Signals of QGP formation & QCD phase transition

- **Signals of QGP formation at top RHIC & LHC energies**
	- **Jet quenching in AA collisions (not in dA)**
	- **Large elliptic flow (success of hydrodynamics)**
	- **Quark number scaling (coalescence of quarks)**
- **Next challenges**
	- **Puzzles: Early thermalization, Photon v2, Small QGP, … → Complete understanding from initial to final states**
	- **Discovery of QCD phase transition**
- **Signals of QCD phase transition at BES energies ?**
	- **Critical Point → Large fluctuation of conserved charges**
	- **First-order phase transition → Softening of EOS**
	- **→ Non-monotonic behavior of proton number moment (κσ²) and collective flow (dv 1 /dy)**

Net-Proton Number Cumulants & Directed Flow

a) antiproton

c) net proton

Data

UrQMD

 $10²$

b) proton

Signals of QGP formation & QCD phase transition

- **Signals of QGP formation at top RHIC & LHC energies**
	- **Jet quenching in AA collisions (not in dA)**
	- **Large elliptic flow (success of hydrodynamics)**
	- **Quark number scaling (coalescence of quarks)**
- **Next challenges**
	- **Puzzles: Early thermalization, Photon v2, Small QGP, … → Complete understanding from initial to final states**
	- **Discovery of QCD phase transition**
- **Signals of QCD phase transition at BES energies ?**
	- **Critical Point → Large fluctuation of conserved charges**
	- **First-order phase transition → Softening of EOS**
	- **→ Non-monotonic behavior of proton number moment (κσ²) and collective flow (dv 1 /dy)**

What is directed flow ?

- \mathbf{v}_1 or $\langle \mathbf{p}_x \rangle$ as a function of y **is called directed flow.**
- **Created in the overlapping stage of two nuclei**
	- **→ Sensitive to the EOS in the early stage.**
- **Becomes smaller at higher energies.**
- **How can we explain non-monotonic dependence** y *of dv*₁/dy ?

Does the "Wiggle" signal the QGP ?

Hydro predicts wiggle with QGP EOS.

Baryon stopping + Positive space-momentum correlation leads wiggle (w/o QGP)

PLB 45 (1999), 454. R.Snellings, H.Sorge, S.Voloshin, F.Wang, N. Xu, PRL (84) 2803(2000)

SPS(NA49) vs RHIC(STAR)

SPS (NA49),
$$
\sqrt{s_{NN}} = 8.9
$$
 GeV

$$
\text{SPS (NA49), } \sqrt{s}_{\text{NN}} = 8.9 \text{ GeV} \qquad \qquad \text{RHIC(STAR), } \sqrt{s}_{\text{NN}} = 11.5 \text{ GeV}
$$

Negative dv¹ /dy

Hydrodynamics PHSD/HSD predictions

V. P. Konchakovski, W. Cassing, Y. B. Ivanov, V. D. Toneev, PRC90('14)014903

Collapse of directed flow

- Negative dv₁/dy at high-energy ($\sqrt{s_{_{NN}}}$ > 20 GeV)
	- **Geometric origin (bowling pin mechanism), not related to FOPT** *R.Snellings, H.Sorge, S.Voloshin, F.Wang, N. Xu, PRL84,2803(2000)*
- **Negative dv**₁/**dy at** $\sqrt{s_{_{NN}}} \sim 10 \text{ GeV}$
	- **Yes, in three-fluid simulations.** *Y. B. Ivanov and A. A. Soldatov, PRC91 (2015)024915*
	- **No, in transport models incl. hybrid. Exception:** *B.A.Li, C.M.Ko ('98) with FOPT EOS*

We investigate the directed flow at BES energies in hadronic transport model with / without mean field effects with / without softening effects via attractive orbit. in hadronic transport model with / without softening effects via attractive orbit.

Hadronic Transport Approach Hadronic Transport Approach Cascade / Cascade + Mean Field Cascade / Cascade + Mean Field

Microscopic Transport Models

- **UrQMD 3.4 Frankfurt public resonance model N*,D*, string pQCD, PYTHIA6.4**
- **PHSD Giessen (Cassing) upon request D(1232),N(1440),N(1530), string, pQCD, FRITIOF7.02**
- **GiBUU 1.6 Giessen (Mosel) public resonance model N*,D*, string, pQCD,PYTHIA6.4**
- **AMPT public HIJING+ZPC+ART**
- **JAM (Y. Nara) public resonance model N*,D*, string, pQCD, PYTHIA6.1**

Transport Model

Boltzmann equation with (optional) potential effects 1

E.g. Bertsch, Das Gupta, Phys. Rept. 160(88), 190

$$
\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f - \nabla U \cdot \nabla_p f = I_{\text{coll}}
$$
\n
$$
\frac{1}{L} \int d\mathbf{p}_2 \int \frac{d\sigma}{d\sigma} \int f f(t) \cdot (1 - f(t)) \frac{2}{L} dt
$$

$$
I_{\text{coll}}(\mathbf{r}, \mathbf{p}) = -\frac{1}{2} \int \frac{d\mathbf{p}_2}{(2\pi)^3} d\Omega \ v_{12} \frac{d\Omega}{d\Omega} \left[f f_2 (1 - f_3)(1 - \bar{f}_4) \right) - (12 \leftrightarrow 34)]
$$

(NN elastic scattering case)

Hadron-string transport model JAM

Collision term → Hadronic cascade with resonance and string excitation *Nara, Otuka, AO, Niita, Chiba, Phys. Rev. C61 (2000), 024901.*

Potential term → Mean field effects in the framework of RQMD/S *Sorge, Stocker, Greiner, Ann. of Phys. 192 (1989), 266. Tomoyuki Maruyama et al., Prog. Theor. Phys. 96(1996), 263. Isse, AO, Otuka, Sahu, Nara, Phys.Rev. C 72 (2005), 064908.*

3

σ 4

 $\nabla\,U$

Relativistic QMD/Simplified (RQMD/S)

- **RQMD is developed based on constraint Hamiltonian dynamics** *H. Sorge, H. Stoecker, W. Greiner, Ann. Phys. 192 (1989), 266.*
	- **8 8N dof** \rightarrow 2N constraints \rightarrow 6N (phase space)
	- **Constraints = on-mass-shell constraints + time fixation**
- **RQMD/S uses simplified time-fixation** *Tomoyuki Maruyama, et al. Prog. Theor. Phys. 96(1996),263.*
	- **Single particle energy (on-mass-shell constraint)**

$$
p_i^0 = \sqrt{\overline{\bm{p}_i^2 + m_i^2 + 2m_i V_i}}
$$

EOM after solving constraints

$$
\dot{\boldsymbol{r}}_i = \frac{\boldsymbol{p}_i}{p_i^0} + \sum_j \frac{m_j}{p_j^0} \frac{\partial V_j}{\partial \boldsymbol{p}_i} \quad \dot{\boldsymbol{p}}_i = -\sum_j \frac{m_j}{p_j^0} \frac{\partial V_j}{\partial \boldsymbol{r}_i}
$$

Relative distances (rⁱ -rj) 2 are replaced with those in the two-body c.m. → Potential becomes Lorentz scalar

Mean Field Potential

Skyrme type density dependent + momentum dependent potential

Comparison with RHIC data on v¹

- **Pot. Eff. on the v1 is significant**
- **Hadronic approach does not reproduce the beam energy dependence of the directed flow.**
	- **→ Something happens around 10-20GeV?**

JAM/M: only formed baryons feel potential forces JAM/Mq: pre-formed hadron feel potential with factor 2/3 for diquark, and 1/3 for quark JAM/Mf: both formed and pre-formed hadrons feel potential forces.

Y. Nara, AO, arXiv:1512.06299 [nucl-th] (QM2015 proc.)

Hadronic Transport Approach Hadronic Transport Approach with Softening Effects with Softening Effects

Softening Effects via Attractive Orbit Scattering

Attractive orbit scattering simulates softening of EOS *P. Danielewicz, S. Pratt, PRC 53, 249 (1996) H. Sorge, PRL 82, 2048 (1999).*

$$
P = P_f + \frac{1}{3TV} \sum_{(i,j)} (q_i \cdot r_i + q_j \cdot r_j)
$$

(*Virial theorem*)

Attractive orbit → particle trajectory are bended in denser region

Let us examine the EOS softening effects, which cannot be explained in hadronic mean field potential, by using attractive orbit scatterings ! Let us examine the EOS softening effects, which cannot be explained in hadronic mean field potential, by using attractive orbit scatterings !

Y. Nara, AO, H. Stöcker, arXiv:1601.07692 [hep-ph]

Directed Flow with Attractive Orbits

Nara, AO, Stöcker ('16)

Mean Field + Attractive Orbit

Nara, AO, Stöcker ('16)

MF+*Attractive Orbit make dv₁/dy negative at √s_{<i>NN}* ~ 10 GeV</sub>

When is negative v₁ slope generated?

Nara, AO, Stöcker ('16)

We need to make v1 slope negative in the compressing stage. We need to make v1 slope negative in the compressing stage.

Tilted Ellipsoid ?

Nara, AO, Stöcker ('16)

Transport model results also show tilted-ellipsoid-like behavior, but it is not enough.

18 GeV, 3-fluid Toneev et al. ('03)

Softening of EOS: Where and How much ?

- **"Softening" should take place at** $\sqrt{s_{NN}}$ **=11.5 GeV** \rightarrow **p/p_B** \sim **(6-10)**
- 0.25 **Attractive orbit** Au+Au, 7.7 GeV $Std.Cas$ – Att.Cas **→ Larger interactions** 0.2 Std.Cas+MF $-\blacksquare$ Att.Cas+MF $-\Theta$ -**& Higher T at later times** $T(GeV)$ 0.15 0.1 0.05 (ρ_R, T) at cm with Gaussian smear $T = P_{xy}^{kin}/\rho$, $\Delta t = 0.5$ fm/c 0.2 Au+Au, 7.7 GeV \rightarrow $\overline{2}$ 10 12 ρ_R/ρ_0 11.5 GeV \rightarrow 19.6 GeV \rightarrow 0.25 0.15 Au+Au, 11.5 GeV Std.Cas $-\blacksquare$ $Att.Cas$ - Γ (GeV) 0.2 Std.Cas+MF Att.Cas+MF $-\theta$ - 0.1 Γ (GeV) 0.15 **Softening** 0.1 0.05 0.05 (ρ_R, T) at cm with Gaussian smear $(\rho_{\rm R}, T)$ at cm with Gaussian smear $T = P_{xy}^{kin}/\rho$, $\Delta t = 0.5$ fm/c $T = P_{xy}^{kin}/\rho$, $\Delta t = 0.5$ fm/c $\overline{2}$ 12 6 8 10 $\mathbf 2$ $\bf{0}$ 8 10 12 14 4 6 ρ_B/ρ_0 ρ_B/ρ_0

14

14

How much softening do we need ?

Virial theorem $\frac{2}{9}$
 $\frac{1}{9}$
 $\frac{1}{1}$
 $\frac{1}{1}$ 1.2 \dot{x} $\mu_{\mathbf{R}}$ $e/o.$ $\Delta P = \frac{1}{3} \langle v \rho^2 \sigma \mathbf{q} \cdot \boldsymbol{\Delta r} \rangle$ 1.05 Simple esitmate: σ = 30 mb, $\langle q \Delta R \rangle \sim 1$ $\mathbf{1}$ 0.95 $T = 0$ 1000 0.9 $0,2$ 0.4 0.6 0.8 1,2 P(MS, Hadronic) *P. Danielewicz, P.B. Gossiaux, R.A. Lacey,* 800 $\Delta P(V$ irial) *nucl-th/9808013 (Les Houches 1998)*600 P(Had.+Virial) $P(MeV/fm³)$ 400 Pressure (MeV/fm³) 200 1000 $\bf{0}$ -200 $e^{\frac{1}{2}2}$ 500 -400 0.2 $1.2 \quad 1.4$ $\bf{0}$ 0.4 0.6 0.8 supersoft eos: c ascade ρ (fm⁻³) 1000 2000 3000 Energy density (MeV/fm^3)

B. A. Li, C. M. Ko, PRC58 ('98) 1382

Summary

- We may see QCD phase transition (1st or 2nd) signals at BES (or J-PARC) energies in baryon number cumulants and v_1 slope.
- Hadronic transport models cannot explain negative **v**₁ slope **below** $\sqrt{s_{NN}} = 20$ GeV.
	- **Geometric (bowling pin) mechanism becomes manifest at higher energies (JAM, JAM-MF, HSD, PHSD, UrQMD, ….).**
- **Hadronic transport with EOS softening can describe negative v₁ slope below** $\sqrt{s_{NN}} = 20$ GeV.
	- **Attractive orbit scattering simulates EOS softening (virial theorem).**
	- **We need more studies to confirm its nature. First-order phase transition ? Crossover ? Forward-backward rapidities ? MF leading to softer EOS ?**

 \blacksquare *We need "re-hardening" at higher energies, e.g.* $\sqrt{s_{NN}} = 27$ GeV.

Thank you !

Wiggle: QGP signal in the directed flow?

L. P. Csernai, D. Röhrich, PLB 45 (1999), 454.

QGP EoS predicts wiggle in hydro

V1 from hydrodynamics

PHSD/HSD predictions

Y. B. Ivanov and A. A. Soldatov, Phys. Rev. C91, no. 2, 024915 (2015)

V. P. Konchakovski, W. Cassing, Y. B. Ivanov and V. D. Toneev, Phys. Rev. C90, no. 1, 014903 (2014)

Microscopic transport models (event generator for nuclear collisions)

- **UrQMD 3.4 Frankfurt public resonance model N*,D*, string pQCD, PYTHIA6.4**
- **PHSD Giessen (Cassing) upon request D(1232),N(1440),N(1530), string, pQCD, FRITIOF7.02**
- **GiBUU 1.6 Giessen (Mosel) public resonance model N*,D*, string, pQCD,PYTHIA6.4**
- **AMPT public HIJING+ZPC+ART**
- **JAM Japan (Y. Nara) public resonance model N*,D*, string, pQCD, PYTHIA6.1**

© Y. Nara Mean field potential

Skyrme type density dependent + Lorentzian momentum dependent potential

$$
V = \sum_{i} V_{i} = \int d^{3}r \left[\frac{\alpha}{2} \left(\frac{\rho}{\rho_{0}} \right)^{2} + \frac{\beta}{\gamma + 1} \left(\frac{\rho}{\rho_{0}} \right)^{\gamma + 1} \right] + \sum_{k} \int d^{3}r d^{3}p d^{3}p' \frac{C_{ex}^{(k)}}{2\rho_{0}} \frac{f(r, p)f(r, p')}{1 + (p - p')^{2}/\mu_{k}^{2}}
$$

Type
$$
\begin{array}{c|c|c|c|c|c|c|c} \alpha & \beta & \gamma & C_{ex}^{(1)} & C_{ex}^{(2)} & \mu_{1} & \mu_{2} & K \\ \hline (MeV) & (MeV) & (MeV) & (MeV) & (fm^{-1}) & (fm^{-1}) & (MeV) \\ \hline \overline{MH1} & -12.25 & 87.40 & 5/3 & -383.14 & 337.41 & 2.02 & 1.0 & 371.92 \\ \hline \end{array}
$$

MS1
$$
\begin{array}{c|c|c|c|c|c} 2 & 87.40 & 5/3 & -383.14 & 337.41 & 2.02 & 1.0 & 371.92 \\ \hline \end{array}
$$

Y. Nara, AO, arXiv:1512.06299 [nucl-th] (QM2015 proc.) Isse, AO, Otuka, Sahu, Nara, PRC 72 (2005), 064908.

Comparison of v1

Effects of potential on the v1 is significant

Hadronic approach does not reproduce the correct beam energy dependence of the directed flow.

Something happens around 10-20GeV?

JAM/M: only formed baryons feel potential forces JAM/Mq: pre-formed hadron feel potential with factor 2/3 for diquark, and 1/3 for quark JAM/Mf: both formed and pre-formed hadrons feel potential forces.

Y. Nara, AO, arXiv:1512.06299 [nucl-th] (QM2015 proc.)

Nuclear Liquid-Gas Phase Transition

J. Pochadzalla et al. (GSI-ALLADIN collab.), PRL 75 (1995) 1040.

Horn, Step and Dale

Non-monotonic behavior in \mathbf{K}^+ **/** π^+ **ratio (Horn), m slope par. (Step or re-hardening), rapidity dist. width of π**

Hybrid Approaches

J. Steinheimer, J. Auvinen, H. Petersen, V. P. Konchakovski, W. Cassing, Yu. B. Ivanov, M. Bleicher, H. Stöcker, PRC89 ('14) 054913 V. D. Toneev, PRC90('14)014903

JAM results at AGS and SPS Energies

JAM w/ Mean-Field effects roughly explains v_1 and v_2 at AGS & **SPS** $(1-158 \text{ A GeV} \rightarrow \sqrt{s_{NN}} = 2.5-20 \text{ GeV})$ $\sqrt{s_{NN}}$ =8.9 GeV $\sqrt{s_{NN}}$ =17.3 GeV 0.15 0.08 Proton v₂ for AGS to SPS Energies 0.06 **40 AGeV Proton** 158 AGeV Proton 0.10 **SIS AGS SPS** 0.04 0.05 0.02 0.00 ي
م Ω **BES**Œ. -0.02 -0.05 MН мs -0.02 -0.10 MS -0.06 CS $MS(N)$ -0115 $\mathbf{v}_2^{\text{-0.08}}$ V_1 -1.0 -1.0 10 100 -2.0 $2.0:2.0$ $2.0₁$ 0.0 0.0 1.0 E_{inc} (AGeV) **y Einc**

M. Isse, AO, N. Otuka, P. K. Sahu, Y. Nara, PRC72('05)064908

Highest Density Matter at J-PARC ?

How do heavy-ion collisions look like ?

Au+Au, 10.6 A GeV Pb+Pb, 158 A GeV

JAMming on the Web <http://www.jcprg.org/jow/>

J-PARC energy

Au+Au, 25 AGeV, b=5 fm (JOW)

QCD phase transition at BES (J-PARC) Energies ?

- **E** *J-PARC Energies*: $\sqrt{s_{NN}} = 4-40$ GeV (or $\sqrt{s_{NN}} = 1.9-6.2$ GeV)
	- **E**(p)=30 GeV \rightarrow E(Au) \sim 12 AGeV (full strip, $\sqrt{s_{NN}}$ = 5.1 GeV for **Au+Au)**
	- **E(p)=50 GeV** → E(Au) ~ 20 AGeV ($\sqrt{s_{NN}}$ = 6.4 GeV)
	- **E**(p)=30 GeV (50 GeV) Collider $\rightarrow \sqrt{s_{NN}}$ = 26 GeV (42 GeV)
- **Two Aspects of J-PARC energies**
	- **Formation of highest baryon density matter**
	- **Various non-monotonic behaviors → Onset of deconfinement**

QCD phase transition at BES (J-PARC) Energies ?

- **E** *J-PARC Energies*: $\sqrt{s_{NN}} = 4-40$ GeV (or $\sqrt{s_{NN}} = 1.9-6.2$ GeV)
	- **E**(p)=30 GeV \rightarrow E(Au) \sim 12 AGeV (full strip, $\sqrt{s_{NN}}$ = 5.1 GeV for **Au+Au)**
	- **E(p)=50 GeV** → E(Au) ~ 20 AGeV ($\sqrt{s_{NN}}$ = 6.4 GeV)
	- **E**(p)=30 GeV (50 GeV) Collider $\rightarrow \sqrt{s_{NN}}$ = 26 GeV (42 GeV)
- **Two Aspects of J-PARC energies**
	- **Formation of highest baryon density matter**
	- **Various non-monotonic behaviors → Onset of deconfinement**

Question Question

Do these Non-mono. behaviors signal the onset of QCD phase transition and/or QCD critical point ? or Do they show some properties of hadronic matter ? → Let's examine in hadronic transport models ! Do these Non-mono. behaviors signal the onset of QCD phase transition and/or QCD critical point ? or Do they show some properties of hadronic matter ? → Let's examine in hadronic transport models !

How to treat mean-field for excited matter?

Hadronic resonance dominant constituent quark dominant due to string

Model 1 JAM/M: potential for all formed baryons

Model 2 JAM/Mq: potentials for quarks inside the pre-formed hadrons

Model 3: JAM/Mf: both formed and pre-formed baryons

Hadronic transport Approach

Purpose : **Effects of hadron mean field potential on the directed flow v1**

JAM hadronic cascade model : resonance and string excitation

Mean field by the framework of the Relativistic Quantum Molecular Dynamics

Nuclear cluster formation by phase space coalescence.

Statistical decay of nuclear fragment

Relativistic QMD/Simplified (RQMD)

© Y. Nara

RQMD based on Constraint Hamiltonian Dynamcis

RQMD/S: Tomoyuki Maruyama, et al. Prog. Theor. Phys. 96(1996),263. Sorge, Stoecker, Greiner, Ann. Phys. 192 (1989), 266.

Single particle energy:

$$
p_i^0=\sqrt{\bm p_i^2+m_i^2+2m_iV_i}
$$

$$
\dot{\boldsymbol{r}}_i = \frac{\boldsymbol{p}_i}{p_i^0} + \sum_j \frac{m_j}{p_j^0} \frac{\partial V_j}{\partial \boldsymbol{p}_i} \hspace{1cm} \dot{\boldsymbol{p}}_i = - \sum_j \frac{m_j}{p_j^0} \frac{\partial V_j}{\partial \boldsymbol{r}_i}
$$

Arguments of potential $r_i - r_j$ and $p_i - p_j$ are replaced by the distances in the two-body c.m.

Relativistic QMD/Simplified (RQMD/S)

- **RQMD = Constraint Hamiltonian Dynamics** *(Sorge, Stocker, Greiner, Ann. of Phys. 192 (1989), 266.)*
- **Constraints: φ ≈ 0 (Satisfied on the realized trajectory, by Dirac)**
	- **Variables in Covariant Dynamics = 8N phase space:** $(\mathbf{q}_{\mu}, \mathbf{p}_{\mu})$
	- **Variables in EOM = 6N phase space → We need 2N constraints to get EOM**
- **On Mass-Shell Constraints**

$$
H_i \equiv p_i^2 - m_i^2 - 2m_i V_i \approx 0
$$

Time-Fixation in RQMD/S

 χ_i ≡ $\hat{\boldsymbol{a}}\!\cdot\! (\boldsymbol{q}_i\!-\!\boldsymbol{q}_N)\!\!\approx\! \boldsymbol{\theta}(\boldsymbol{i}\!=\!\boldsymbol{1},\!\sim\!N\!-\!\boldsymbol{1})$, $\chi_N\!\equiv\!\hat{\boldsymbol{a}}\!\cdot\!\boldsymbol{q}_N\!-\!\tau\!\approx\!\boldsymbol{0}$ \hat{a} = Time-like unit vector in the Calculation Frame *(Tomoyuki Maruyama et al., Prog. Theor. Phys. 96(1996), 263.)*

RQMD/S (cont.)

Hamiltonian is made of constraints

$$
H = \sum_{i} u_i \Phi_i \quad (\Phi_i = H_i (i = I \sim N), \chi_{i=N} (i = N + I \sim 2N))
$$

$$
df = \frac{\partial f}{\partial f} \quad (f \quad H) \quad (g \quad R) = \infty
$$

- **Time Development** $\frac{d}{d\tau}$ = ∂ T ${f}$ + {*f* , *H* } , {*q*_µ, *p*_v}=*g*_{µν}
- **Lagrange multipliers are determined to keep constraints →** *We can obtain the multipliers analytically in RQMD/S* $d \phi_i$ $d\tau$ $\approx 0 \rightarrow \delta_{i,2N} + \sum_{j} u_{j} {\{\phi_{i}, \phi_{j}\}} \approx 0$
- **Equations of Motion**

$$
H = \sum_{i} (p_i^2 - m_i^2 - 2m_i V_i)/2p_i^0 , \quad p_i^0 = E_i = \sqrt{p_i^2 + m_i^2 + 2m_i V_i}
$$

$$
\frac{d\vec{r}_i}{d\tau} \approx -\frac{\partial H}{\partial \vec{p}_i} = \frac{\vec{p}}{p_i^0} + \sum_j \frac{m_j}{p_j^0} \frac{\partial V_j}{\partial \vec{p}_i} , \quad \frac{d\vec{p}_i}{d\tau} \approx \frac{\partial H}{\partial \vec{r}_i} = -\sum_j \frac{m_j}{p_j^0} \frac{\partial V_j}{\partial \vec{r}_i}
$$

We can include MF in an almost covariant way in molecular dynamics

Particle "DISTANCE"

$$
r_{Tij}^{2} \equiv r_{\mu} r^{\mu} - \left(r_{\mu} P_{ij}^{\mu} \right)^{2} / P_{ij}^{2} = \vec{r}^{2} \quad (\text{in CM})
$$

$$
P_{ij} \equiv p_{i} + p_{j} \quad, \quad r \equiv r_{i} - r_{j}
$$

Particle "Momentum Difference"

$$
p_{Tij}^{2} \equiv p_{\mu} p^{\mu} - \left(p_{\mu} P_{ij}^{\mu} \right)^{2} / P_{ij}^{2} = \vec{p}^{2} \quad (\text{in CM})
$$

$$
p \equiv p_{i} - p_{j}
$$

Lorentz Invariant, and Becomes Normal Distance in CM ! Lorentz Invariant, and Becomes Normal Distance in CM !

