Directed flow in heavy-ion collisions as a probe of the first order phase transition

> Akira Ohnishi¹ in collaboration with Yasushi Nara^{2,3}, Harri Niemi⁴, Horst Stoecker^{3,4,5} 1. YITP, Kyoto U., 2. Akita Int. U., 3. FIAS, 4. Frankfurt U., 5. GSI

> > The 34th Reimei WorkShop on "Physics of Heavy-Ion Collisions at J-PARC", Aug.8-9, 2016, J-PARC, Japan

- Introduction: Negative dv1/dy at $\sqrt{s_{NN}} \sim 10$ GeV
- Hadronic transport model with Softening Effects
- Summary

Y. Nara, A. Ohnishi, arXiv:1512.06299 [nucl-th] (QM2015 proc., to appear) Y. Nara, H. Niemi, A. Ohnishi, H. Stoecker, arXiv:1601.07692 [hep-ph]

QCD Phase Diagram

QCD Phase Diagram

QCD phase transition

- QCD phase transition at top RHIC & LHC energies = Crossover
 One of Next Grand Challenges
 =Discovery of 1st or 2nd order phase transition in QCD
- Signals of QCD phase transition at J-PARC energies (√s_{NN}=5-10 GeV)?

 - Critical Point \rightarrow Large fluctuation of conserved charges
 - First-order phase transition → Softening of EOS
 - \rightarrow Non-monotonic behavior of proton number moment ($\kappa\sigma^2$) and collective flow (dv₁/dy)

Net-Proton Number Cumulants & Directed Flow

Two ways to probe QCD phase transition

What is directed flow ?

- v₁ or <p_x> as a function of y is called directed flow.
- Created in the overlapping stage of two nuclei
 - \rightarrow Sensitive to the EOS in the early stage.
- Becomes smaller at higher energies.

How can we explain non-monotonic dependence of dv_{1}/dy ? \rightarrow Softening or Geometry

SPS(NA49) vs RHIC(STAR)

Does Directed Flow Collapse Signal Phase Tr. ?

 Geometric origin (bowling pin mechanism), not related to FOPT *R.Snellings, H.Sorge, S.Voloshin, F.Wang, N. Xu, PRL84,2803('00)*

• Negative dv_1/dy at $\sqrt{s_{NN}} \sim 10 \text{ GeV} \rightarrow \text{Controversial}$!

Yes, in three-fluid simulations. → Thermalization ?
 Y. B. Ivanov and A. A. Soldatov, PRC91('15)024915; P. Batyuk et al., 1608.00965.

 No (for semi-central collisions), in transport models incl. hybrid. E.g. J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, H. Stoecker, PRC89('14)054913.
 Exception: B.A.Li, C.M.Ko ('98) with FOPT EOS

We investigate the directed flow at J-PARC energies in hadronic transport model with / without mean field effects and with / without softening effects via attractive orbit.

(b)

(d)

Rapidity

3

 $\langle p_x \rangle, \langle x \rangle_x$

(c)

Hadronic Transport with Softening Effects

Transport Model

- Microscopic Transport Models
 - Boltzmann equation
 with (optional) potential effects
 E.g. Bertsch, Das Gupta, Phys. Rept. 160(88), 190

UrQMD 3.4 (Frankfurt), PHSD Giessen (Cassing), GiBUU 1.6 Giessen (Mosel), AMPT (Texas A&M), JAM (Y. Nara)

Hadron-string transport model JAM

- Hadronic cascade with resonance and string excitation Nara, Otuka, AO, Niita, Chiba, Phys. Rev. C61 (2000), 024901.
- Potential term → Mean field effects in the framework of RQMD/S Sorge, Stocker, Greiner, Ann. of Phys. 192 (1989), 266. Tomoyuki Maruyama et al., Prog. Theor. Phys. 96(1996), 263. Isse, AO, Otuka, Sahu, Nara, Phys.Rev. C 72 (2005), 064908.

Mean Field Potential

Skyrme type density dependent + momentum dependent potential

Y. Nara, AO, arXiv:1512.06299 [nucl-th] (QM2015 proc.) <u>Isse, AO, Otuka, Sahu, Nara, PRC 72 (2005), 0649</u>08.

Comparison with RHIC data on v₁

■ Pot. Eff. on the v_1 is significant, but dv1/dy becomes negative only at $\sqrt{s_{NN}} > 20$ GeV.

Hadronic approach does not explain directed flow collapse at 10-20 GeV even with potential effects.

JAM/M: only formed baryons feel potential forces JAM/Mq: pre-formed hadron feel potential with factor 2/3 for diquark, and 1/3 for quark JAM/Mf: both formed and pre-formed hadrons feel potential forces.

Y. Nara, AO, arXiv:1512.06299 [nucl-th] (QM2015 proc.)

Softening Effects via Attractive Orbit Scattering

Attractive orbit scattering simulates softening of EOS
 P. Danielewicz, S. Pratt, PRC 53, 249 (1996) H. Sorge, PRL 82, 2048 (1999).

$$P = P_f + \frac{1}{3TV} \sum_{(i,j)} (\boldsymbol{q}_i \cdot \boldsymbol{r}_i + \boldsymbol{q}_j \cdot \boldsymbol{r}_j)$$
(Virial theorem)

- With attractive orbit, particle trajectories are bended toward denser region.
 - → Attractive orbit scattering simulates time evolution with softer EOS !

Let us examine the EOS softening effects, which cannot be explained in hadronic mean field potential, by using attractive orbit scatterings !

Y. Nara, H. Niemi, AO, H. Stöcker, arXiv:1601.07692 [hep-ph]

Directed Flow with Attractive Orbits

Nara, Niemi, AO, Stöcker ('16)

Neutron Star Matte

Softening: Where and How much ?

Softening of EOS by Attractive Orbits

Pressure in simulated EOS ~ EOS-Q (e.g. Song, Heinz ('08))

Summary

- We may see QCD phase transition (1st or 2nd) signals at BES (or J-PARC) energies in baryon number cumulants and v₁ slope.
- Hadronic transport models cannot explain negative v_1 slope below $\sqrt{s_{_{NN}}} = 20$ GeV.
 - Geometric (bowling pin) mechanism becomes manifest at higher energies (JAM, JAM-MF, HSD, PHSD, UrQMD,).
- Hadronic transport with EOS softening can describe negative v_1 slope below $\sqrt{s_{NN}} = 20$ GeV.
 - Y. Nara, H. Niemi, A. Ohnishi, H. Stoecker, arXiv:1601.07692 [hep-ph]
 - Attractive orbit scattering simulates EOS softening (virial theorem).
 - We need more studies to confirm its nature. First-order phase transition ? Crossover ? Forward-backward rapidities ? MF leading to softer EOS ?

• We need "re-hardening" at higher energies, e.g. $\sqrt{s_{_{NN}}} = 27 \text{ GeV}$.

Thank you !

Directed Flow

P. K. Sahu, W. Cassing, U. Mosel, AO, Nucl. Phys. A 672 (2000),376

Mean Field + Attractive Orbit

Nara, Niemi, AO, Stöcker ('16)

MF+*Attractive Orbit make dv*/*dy negative at* $\sqrt{s_{NN}} \sim 10$ *GeV*

v1 is sensitive to highest density regime

Nara, Niemi, AO, Stöcker ('16)

Softening of EOS: Where and How much ?

- Softening" should take place at $\sqrt{s_{NN}}=11.5 \text{ GeV} \rightarrow \rho/\rho_{B} \sim (6-10)$
- 0.25 Au+Au, 7.7 GeV Attractive orbit Std.Cas Att.Cas 0.2 \rightarrow Larger interactions Std.Cas+MF Att.Cas+MF - @ T (GeV) & Higher T at later times 0.15 0.1 0.05 (p_B,T) at cm with Gaussian smear $T=P_{xy}^{kin}/\rho$, $\Delta t=0.5$ fm/c 0.2 Au+Au, 7.7 GeV 🗕 1012 2 14 $\rho_{\rm B}/\rho_0$ 11.5 GeV -19.6 GeV -0.25 0.15 Au+Au, 11.5 GeV Std.Cas -Att.Cas [(GeV) 0.2 Std.Cas+MF 0.1 Att.Cas+MF - e -T (GeV) 0.15 Softening 0.1 0.05 0.05 $(\rho_{\mathbf{B}}, \mathbf{T})$ at cm with Gaussian smear (p_R,T) at cm with Gaussian smear $T=P_{xy}^{kin}/\rho, \Delta t=0.5 \text{ fm/c}$ $T=P_{xy}^{kin}/\rho$, $\Delta t=0.5$ fm/c 0 2 12 14 106 2 14 0 8 10 12 6 $\rho_{\rm B}/\rho_0$ $\rho_{\rm B}/\rho_0$

How about v_2 ?

27 GeV

19.6 GeV

0.04

0

0.04

0.02 😪

s[™] 0.02

10-40 %

JAM

JAM Attractive

protons

- Do we see softening effects in other observables, e.g. v₂?
- Yes, attractive orbits reduces proton v₂ by ~ 0.2 %.

(but there is no qualitative change.)

Relation to Neutron Star Matter

- We may need early transition (2-5 ρ₀) to quark matter to solve the hyperon puzzle. Contradicting ?
 Tomporature offects (T = 0 MeV & 100 MeV)
 - Temperature effects (T ~ 0 MeV & 100 MeV)
 Isospin chem. pot. (Weaker transition with finite δμ)
 Hyperon repulsion may push up the transition density.

AO, Ueda, Nakano, Ruggieri, Sumiyoshi, PLB704('11),284 H. Ueda, T. Z. Nakano, AO, M. Ruggieri, K. Sumiyoshi, PRD88('13),074006

Negative dv_1/dy around $\sqrt{s_{NN}} \sim 10$ GeV

■ No at around √s_{NN}~10 GeV in transport models.

V. P. Konchakovski, W. Cassing, Y. B. Ivanov, V. D. Toneev, PRC90('14)014903