Three Baryon Interaction in the Quark Cluster Model --- 3B Interaction from Determinant Interaction of Quarks as an example

> Akira Ohnishi, Kouji Kashiwa, Kenji Morita YITP, Kyoto U.

Nuclear Physics, Compact Stars, and Compact Star Mergers 2016 NPCSM 2016, Oct.17-Nov.18, 2016, YITP, Kyoto, Japan

AO, K. Kashiwa, K. Morita, arXiv:1610.06306

Will be announced TODAY !

Nuclear Physics, Compact and Compact Star Mergers 2016 Matt

Contents

- Introduction
 - Hyperon Puzzle
 - Kobayashi-Maskawa-'t Hooft interaction
- Three-baryon force from KMT interaction from quark cluster model
 - Quark cluster model
 - Norm of 3B states
 - 3B potential from KMT interaction
- Summary

utroi

Star

Hyperon Puzzle (or Hyperon Crisis)

Demorest et al., Nature 467 (2010) 1081 (Oct.28, 2010).

Proposed Solutions

Hyperonic EOS cannot support massive NS (M ~ 2 M_o). Demorest et al. (2010), Antoniadis et al. (2013)

Proposed Solutions

- Hyperonic Three-Body Force (or density dep. coupling) Bednarek et al. ('12), Jiang et al. ('12); Long et al. ('12); Yamamoto et al. ('14); Lonardoni et al. ('15); Tsubakihara et al. ('13), T. Miyatsu et al. ('13), ...
- Crossover Transition to Quark Matter Bonanno et al.('12); Masuda et al. ('13); Bejger et al.('16), ...

Modified Gravity

Star

Mat

Astashenok et al. ('14)

Three-nucleon interaction is known to be necessary. How can we determine YNN (+YYN, YYY) potential ?

Baryon-Baryon Force

- **Long-range (r>2 fm):** π exch.
- Intermediate (r ~ 1 fm): multi π exch., boson exch., ...
- Short range (r < 0.6 fm): vector boson exch., Pomeron exch., quark exclusion + one gluon exch.,

Quark model description of 3B repulsion should be a promising approach !

and Compact Star Mergers 2016

Nuclear Physics, Compact Stars

Star

Matte

Fujiwara, Suzuki, Nakamoto ('07)

Three-Baryon force

Star Muclear Physics, Compact Stars, and Compact Star Mergers 2016 NPCSM 2016, Oct. 17 Nov. 18, 2016, OTTP, Kusto, Japa

Kobayashi-Maskawa-'t Hooft (KMT) interaction

KMT interaction

Kobayashi, Maskawa ('70), 't Hooft ('76)

S

- $\mathcal{L}_{=}g_D (\det \Phi + \text{h.c.}), \quad \Phi_{ij} = \bar{q}_j(1 \gamma_5)q_i$
- Determinant interaction in flavor for three quarks (SU(3),)
- Responsible for U(1)_A anomaly η-η' mass diff.
 → g_D= -9.29 Hatsuda, Kunihiro ('94) -12.36 Rehberg, Klevanski, Hufner ('96)
- KMT interaction should generate 2B and 3B interaction when hyperons are involved.
- Repulsive in ΛΛ system
 → Pushes up H particle energy. *Takeuchi, Oka ('91)*

Does anomaly support massive NS ?

Star Matter Motter MPCSM 2016, Oct. 17-Nov. 18, 2016, OTER, Kyoto, Jap

Quark Cluster model

Totally anti-symmetrized wave function of baryons

$$|\Psi\rangle = \mathcal{A}|\chi_{12}B_1B_2\rangle$$
$$|\Psi\rangle = \mathcal{A}|\chi_{123}B_1B_2B_3\rangle$$

Resonating Group Method

$$\int d\mathbf{r}' H(\mathbf{r}, \mathbf{r}') \chi(\mathbf{r}') = E \int d\mathbf{r}' N(\mathbf{r}, \mathbf{r}') \chi(\mathbf{r}')$$

$$\rightarrow -\frac{\hbar^2}{2\mu} \nabla^2 \chi^{(N)} + (V\chi^{(N)}) = E\chi^{(N)} \quad (\chi^{(N)} = \mathcal{N}^{1/2}\chi)$$

$$H(\mathbf{r}, \mathbf{r}') = \langle \mathbf{r} B_1 B_2 \dots | H | \mathcal{A}(\mathbf{r}' B_1 B_2 \dots) \rangle$$

$$N(\mathbf{r}, \mathbf{r}') = \langle \mathbf{r} B_1 B_2 \dots | \mathcal{A}(\mathbf{r}' B_1 B_2 \dots) \rangle$$

• When (wave length of χ) >> (baryon size), $V(\mathbf{r}) \simeq \Delta K + \langle V \mathcal{A} \rangle / \langle \mathcal{A} \rangle$

Norm Kernel

Antisymmetrizer makes the calculation complicated !

YUKAWA INSTITUTE FOR YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

Motter and Compact Star Mergers 2016 NPCSM 2016, Oct. 17-Nov. 18, 2016, VITP, Kuoto, 19

Nuclear Physics, Compact Stars,

Norm Kernel

					_					
Baryon(s)	$\mathcal{N}_{\mathcal{A}}$	$\mathcal{T}_{\mathcal{A}}$	\mathcal{T}	$\mathcal{T}_{nB}(n=2,3)$	_					
$(NN)_{(S,T)=(0,1),(1,0)}$	10/9	0	0	0	-					
$N_{\uparrow}\Lambda_{\uparrow}, N_{\downarrow}\Lambda_{\downarrow}$	1	20/3	20/3	20/3						
$N_{\uparrow}\Lambda_{\downarrow}, N_{\downarrow}\Lambda_{\uparrow}$	1	10/3	10/3	10/3						
$(\Lambda\Lambda)_{S=0}$	1	18/3	18/3	18/3						
$(NNN)_{(S,T)=(1/2,1/2)}$	100/81	0	0	0	_					
$n_{\uparrow}n_{\downarrow}\Lambda, p_{\uparrow}p_{\downarrow}\Lambda$	25/27	350/27	14	12/3						
$n_{\uparrow}p_{\uparrow}\Lambda_{\uparrow}, n_{\downarrow}p_{\downarrow}\Lambda_{\downarrow}$	25/27	750/27	30	50/3						
$n_{\uparrow}p_{\uparrow}\Lambda_{\downarrow}, n_{\downarrow}p_{\downarrow}\Lambda_{\uparrow}$	25/27	250/27	10	10/3						
$n_{\uparrow}p_{\downarrow}\Lambda, n_{\downarrow}p_{\uparrow}\Lambda$	25/27	425/27	17	21/3		1				
$N\Lambda_{\uparrow}\Lambda_{\downarrow}$	45/54	1035/54	23	21/3	2, -3, -4 B S=0, -1, -2,	-3,	-4,	-5, -6		
	•					3B				
				1 •			<u> </u>			
Not very small				5 0.8		***		<u>~</u> -		
				ž _{0.6} 🛛 🖫			• • • • • • • • • • • • • • • • • • •	-		
rot very sman			0.4				AA [®] AA			
				0.1		a 2000 00 00 00 00		^_		
				0.2			4 ⁶⁰ <u>000</u> as			
	0		nnol	1	-					
					Channel					

AO, Kashiwa, Morita ('16)

Nuclear Physics, Compact Stars, and Compact Star Mergers 2016

Star Matter

YUKAWA INSTITUTE FOR

THEORETICAL PHYSICS

KMT matrix element

Reduction of KMT interaction to 3 quark pot.

$$V_{\text{KMT}} \simeq -2g_{\text{D}} \int d^3x \,\varepsilon_{ijk} \,u^{\dagger}(\boldsymbol{x}) q_i(\boldsymbol{x}) \,d^{\dagger}(\boldsymbol{x}) q_j(\boldsymbol{x}) \,s^{\dagger}(\boldsymbol{x}) q_k(\boldsymbol{x})$$
$$= -2g_{\text{D}} \varepsilon_{ijk} \sum_{\{\alpha,\beta,\gamma\}} \hat{T}^{u,i}_{\alpha} \,\hat{T}^{d,j}_{\beta} \,\hat{T}^{s,k}_{\gamma} \,\delta(x_{\alpha} - x_{\beta}) \delta(x_{\beta} - x_{\gamma})$$

Flavor exchanging operator

$$\begin{split} \hat{\mathcal{T}}^{\mathrm{KMT}} &= \sum_{\{\alpha,\beta,\gamma\}} \varepsilon_{ijk} \, \hat{T}^{u,i}_{\alpha} \, \hat{T}^{d,j}_{\beta} \, \hat{T}^{s,k}_{\gamma} \\ \mathcal{T}_{\mathcal{A}} \equiv & \langle \psi_{\mathcal{A}} \mid \hat{\mathcal{T}}^{\mathrm{KMT}} \mid \psi_{\mathcal{A}} \rangle \quad \mathcal{T} = \mathcal{T}_{\mathcal{A}} / \mathcal{N}_{\mathcal{A}} \end{split}$$

Subtract the two-body part

$$\mathcal{T}_{3B}(n_{\uparrow}n_{\downarrow}\Lambda_{\uparrow}) = \mathcal{T}(n_{\uparrow}n_{\downarrow}\Lambda_{\uparrow}) - \mathcal{T}(n_{\uparrow}\Lambda_{\uparrow}) - \mathcal{T}(n_{\downarrow}\Lambda_{\uparrow})$$

KMT matrix element

Baryon(s)	$\mathcal{N}_{\mathcal{A}}$	$\mathcal{T}_{\mathcal{A}}$	\mathcal{T}	$\mathcal{T}_{nB}(n=2,3)$				
$(NN)_{(S,T)=(0,1),(1,0)}$	10/9	0	0	0				
$N_{\uparrow}\Lambda_{\uparrow}, N_{\downarrow}\Lambda_{\downarrow}$	1	20/3	20/3	20/3				
$N_{\uparrow}\Lambda_{\downarrow}, N_{\downarrow}\Lambda_{\uparrow}$	1	10/3	10/3	10/3		Big for	npΛ	
$(\Lambda\Lambda)_{S=0}$	1	18/3	18/3	18/3		$(\mathbf{S}-2/2)$		
$(NNN)_{(S,T)=(1/2,1/2)}$	100/81	0	0	0		(3-3/2)	•	
$n_{\uparrow}n_{\downarrow}\Lambda, p_{\uparrow}p_{\downarrow}\Lambda$	25/27	350/27	14	12/3				
$n_{\uparrow}p_{\uparrow}\Lambda_{\uparrow}, n_{\downarrow}p_{\downarrow}\Lambda_{\downarrow}$	25/27	750/27	30	50/3				
$n_{\uparrow}p_{\uparrow}\Lambda_{\downarrow}, n_{\downarrow}p_{\downarrow}\Lambda_{\uparrow}$	25/27	250/27	10	10/3				
$n_{\uparrow}p_{\downarrow}\Lambda, n_{\downarrow}p_{\uparrow}\Lambda$	25/27	425/27	17	21/3				
$N\Lambda_{\uparrow}\Lambda_{\downarrow}$	45/54	1035/54	23	21/3	=0, -1, -2,	-3,	-4,	-5, -6
						3B		
KMT matrix elements strongly depend on the channel			T _{1B,2B,3B}	20 2B 15 10 5 1B 0				
		-5	5 Channel					

Stor Motter Motter NFCSM 2016, Oct. 17-Nov. 18, 2016, 91TP, Kyoto, Japa

3B potential from KMT interaction

Reduction of KMT interaction to 3 quark pot.

$$\begin{split} V_{3B}^{KMT} = &-2\,g_D T_{3B} \int d^3 x \varphi_{R_a}^*(x) \varphi_{R_b}^*(x) \varphi_{R_c}^*(x) \varphi_{R_d}(x) \varphi_{R_e}(x) \varphi_{R_f}(x) \\ V_{3B}^{KMT}(R_1, R_2, R_3) \simeq &V_0 \mathcal{T}_{3B} \exp\left[-\frac{2\nu}{3}(R_{12}^2 + R_{23}^2 + R_{31}^2)\right] \\ V_0 \equiv \frac{-2g_{\rm D}}{(\sqrt{3}\pi b^2)^3} = \frac{-2g_{\rm D}\Lambda^5}{(\sqrt{3}\pi b^2\Lambda^2)^3} \Lambda = \begin{cases} 1.45 \text{ MeV} & (b = 0.6 \text{ fm}) \\ 2.29 \text{ MeV} & (b = 0.5562 \text{ fm}) \end{cases}. \end{split}$$

Parameters are taken from

Hatsuda, Kunihiro ('94), Rehberg, Klevanski, Hufner ('96), Fujiwara, Suzuki, Nakamoto ('07), Oka, Yazaki ('81)

Mat

3B potential from KMT interaction

KMT 3B Potential

utroi

Star

Nuclear Physics, Compact Stars, Matter and Compact Star Mergers 2016

KMT-3B Contribution to A potential

Density is assumed to be uniform. No correlation effects.

eutron

Star

Nuclear Physics, Compact Stars Matter and Compact Star Mergers 2016

3B potential from KMT: Repulsive enough ?

YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

tor Matter Nuclear Physics, Compact Stars, and Compact Star Mergers 2016 NPCSM 2016, 0ct.17-Nov.18, 2016, OTTP: Kuoto, 9a

Summary

- Quark model three-baryon (3B) potential may be a promising method to evaluate the 3B potential at short distances.
- Kobayashi-Maskawa-'t Hooft (KMT) interaction generates 3q potential among u,d,s quarks, and generates 3B potential only when hyperons are involved.
- Expectation value of the KMT interaction is evaluated in the cases where 3B are located at the same spatial point. Matrix elements strongly depend on the baryon trio.
- 3B potential from KMT interaction is obtained.
 - It is comparable in strength to the lattice 3N potential.
 - More repulsive in npΛ than in nnΛ (Negative contribution to symmetry energy.)
- 3B pot. from KMT is not strong enough to solve the hyperon puzzle, but contributes to hyperon suppression.

Thank you for your attention !

Nuclear Physics, Compact Stars, and Compact Star Mergers 2016 NPCSM 2016, Oct.17-Nov.18, 2016, VTEP, Kuoto, Ja

