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Signals of QGP formation & QCD phase transition

Signals of QGP formation at top RHIC & LHC energies

Jet quenching in AA collisions (not in dA)

Large elliptic flow (success of hydrodynamics)

Quark number scaling (coalescence of quarks)

Next challenges

Puzzles: Early thermalization, Photon v2, Small QGP,  …
→ Complete understanding from initial to final states 

Discovery of QCD phase transition

Signals of QCD phase transition at BES energies ?

Critical Point → Large fluctuation of conserved charges

First-order phase transition → Softening of EOS

→ Non-monotonic behavior of  
proton number moment (κσ2) and collective flow (dv

1
/dy) 

Tsukiji et al.
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Net-Proton Number Cumulants & Directed Flow

STAR Collab. PRL 112(’14)032302 STAR Collab., PRL 112(’14)162301.
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Signals of QGP formation & QCD phase transition

Signals of QGP formation at top RHIC & LHC energies

Jet quenching in AA collisions (not in dA)

Large elliptic flow (success of hydrodynamics)

Quark number scaling (coalescence of quarks)

Next challenges

Puzzles: Early thermalization, Photon v2, Small QGP,  …
→ Complete understanding from initial to final states 

Discovery of QCD phase transition

Signals of QCD phase transition at BES energies ?

Critical Point → Large fluctuation of conserved charges

First-order phase transition → Softening of EOS

→ Non-monotonic behavior of  
proton number moment (κσ2) and collective flow (dv

1
/dy) 

Tsukiji et al.

Ichihara, 
Morita, AO
Doi, Tsutsui
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What is directed flow ?

v1 or <px> as a function of y
is called directed flow.

Sensitive to the EOS in the 
early stage.

Becomes smaller at higher 
energies.

y

v1=⟨ px / p ⟩

v1, ⟨ px⟩
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V1 from hydrodynamics
Y. B. Ivanov and A. A. Soldatov, Phys. Rev. C91, 
no. 2, 024915 (2015) 

V. P. Konchakovski, W. Cassing, Y. B. Ivanov and V. D. Toneev, 
Phys. Rev. C90, no. 1, 014903 (2014) 

 PHSD/HSD predictions
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Wiggle: QGP signal in the directed flow? 

L. P. Csernai, D. Röhrich, PLB 45 (1999), 454.

RQMD v2.4

Baryon stopping + Positive space-momentum
 correlation leads wiggle ( no QGP)

R.Snellings, H.Sorge, S.Voloshin, F.Wang, N. Xu, PRL (84) 
2803(2000) 

QGP EoS predicts wiggle in hydro
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Collapse of directed flow

Negative dv
1
/dy at high-energy (√s

NN
 > 20 GeV)

Geometric origin (bowling pin mechanism), not related to FOPT
R.Snellings, H.Sorge, S.Voloshin, F.Wang, N. Xu, PRL84,2803(2000) 

Negative dv
1
/dy at √s

NN
 ~ 10 GeV

Yes, in three-fluid simulations.

No, in transport models incl. hybrid.
Exception: B.A.Li, C.M.Ko ('98) with FOPT EOS 

We investigate the directed flow at BES energies
in hadronic transport model 
with / without mean field effects
with / without softening effects via attractive orbit.

We investigate the directed flow at BES energies
in hadronic transport model 
with / without mean field effects
with / without softening effects via attractive orbit.
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Hadronic Transport Approach
Cascade / Cascade + Mean Field
Hadronic Transport Approach

Cascade / Cascade + Mean Field
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Microscopic transport models
(event generator for nuclear collisions)

● UrQMD 3.4 Frankfurt  public
             resonance model N*,D*,  string pQCD, PYTHIA6.4 
 
● PHSD Giessen (Cassing)  upon request
            D(1232),N(1440),N(1530), string, pQCD,  FRITIOF7.02

● GiBUU 1.6 Giessen  (Mosel)  public
           resonance model  N*,D*, string, pQCD,PYTHIA6.4
● AMPT  public
           HIJING+ZPC+ART

● JAM Japan (Y. Nara) public
          resonance model N*,D*,  string, pQCD, PYTHIA6.1



A. Ohnishi  @ YITP-IOPP, Feb.20, 2016 12 

Transport Model

Boltzmann equation with potential effects
E.g. Bertsch, Das Gupta, Phys. Rept.  160( 88), 190

                                                                (NN elastic scattering case)

Hadron-string transport model JAM

Collision term → Hadronic cascade with resonance and string 
excitation
Nara, Otuka, AO, Niita, Chiba, Phys. Rev. C61 (2000), 024901.

Potential term → Mean field effects in the framework of RQMD/S
Sorge, Stocker, Greiner, Ann. of Phys. 192 (1989), 266.
Tomoyuki Maruyama et al., Prog. Theor. Phys. 96(1996), 263.
Isse, AO, Otuka, Sahu, Nara, Phys.Rev. C 72 (2005), 064908.

1

2

3

4σ
∇U
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Relativistic QMD/Simplified (RQMD/S)

RQMD is developed based on constraint Hamiltonian dynamics
H. Sorge, H. Stoecker, W. Greiner, Ann. Phys. 192 (1989), 266.

8N dof → 2N constraints → 6N (phase space)

Constraints = on-mass-shell constraints + time fixation

RQMD/S uses simplified time-fixation
Tomoyuki Maruyama, et al. Prog. Theor. Phys. 96(1996),263.

Single particle energy (on-mass-shell constraint)

EOM after solving constraints

Relative distances (r
i
-r

j
)2 are replaced with those in the two-body c.m.

→ Potential becomes Lorentz scalar

pi
0=√ pi2+mi2+2miV i

ṙi=
pi

pi
0
+∑
j

m j

p j
0

∂V j
∂ pi

ṗi=−∑
j

m j

p j
0

∂V j
∂ ri
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Mean field potential

Skyrme type density dependent + Lorentzian momentum dependent potential

Y. Nara, AO, arXiv:1512.06299 [nucl-th] (QM2015 proc.)
Isse, AO, Otuka, Sahu, Nara, PRC 72 (2005), 064908.
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Comparison of v1

Hadronic approach does not reproduce
the correct beam energy dependence
of the directed flow.

Something happens around 10-20GeV?

JAM/M: only formed baryons feel potential forces
JAM/Mq: pre-formed hadron feel potential with
                factor 2/3 for diquark, and 1/3 for quark
JAM/Mf: both formed and pre-formed hadrons
                feel potential forces.

Effects of potential on the v1 is significant 

Y. Nara, AO, arXiv:1512.06299 [nucl-th] (QM2015 proc.)
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Hadronic Transport Approach
with Softening Effects

Hadronic Transport Approach
with Softening Effects
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Softening Effects via Attractive Orbit Scattering

Attractive orbit scattering simulates softening of EOS
P. Danielewicz, S. Pratt, PRC 53, 249 (1996)
H. Sorge, PRL 82, 2048 (1999).

Attractive orbit → particle trajectory are bended in denser region 

 

σ

(Virial theorem)

Let us examine the EOS softening effects,
which cannot be explained in hadronic mean field potential, 
by using attractive orbit scatterings !

Let us examine the EOS softening effects,
which cannot be explained in hadronic mean field potential, 
by using attractive orbit scatterings !

Y. Nara, AO, H. Stöcker, arXiv:1601.07692 [hep-ph]
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Directed Flow with Attractive Orbits

mid-central (10-40 %) central (0-10 %)

Nara, AO, Stöcker ('16)

Softening !
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Mean Field + Attractive Orbit
Nara, AO, Stöcker ('16)

MF+Attractive Orbit make dv
1
/dy negative at √s

NN
 ~ 10 GeVMF+Attractive Orbit make dv

1
/dy negative at √s

NN
 ~ 10 GeV

Softening !
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When is negative v
1
 slope generated ?

Nara, AO, Stöcker ('16)

We need to make v1 slope negative in the compressing stage.We need to make v1 slope negative in the compressing stage.
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Tilted Ellipsoid ? 

18 GeV, 3-fluid
Toneev et al. ('03)

Nara, AO, Stöcker ('16)

Transport model results also show
tilted-ellipsoid-like behavior, 
but it is not enough.
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Summary

We may see QCD phase transition (1st or 2nd ) signals at BES 
(or J-PARC) energies in baryon number cumulants and v

1
 slope.

Hadronic transport models cannot explain negative v
1
 slope

below √s
NN

 = 20 GeV.

Geometric (bowling pin) mechanism becomes manifest at higher 
energies (JAM, JAM-MF, HSD, PHSD, UrQMD, ….).

Hadronic transport with EOS softening can describe negative v
1
 

slope below √s
NN

 = 20 GeV.

Attractive orbit scattering simulates EOS softening (virial theorem).

We need more studies to confirm its nature.
First-order phase transition ? Crossover ? Forward-backward 
rapidities ? MF leading to softer EOS ? 

We need “re-hardening” at higher energies, e.g. √s
NN

 = 27 GeV.
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Thank you !
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Nuclear Liquid-Gas Phase Transition

Caloric curve → LG phase transition
(Smoking gun)

J. Pochadzalla et al. (GSI-ALLADIN collab.), 
PRL 75 (1995) 1040.

AO, Randrup ('98)

Fixed Volume

Fixed Pressure

T. Furuta, A.Ono ('09)
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Horn, Step and Dale

Non-monotonic behavior in K+/ π+ ratio (Horn), 
m

T
 slope par. (Step or re-hardening), rapidity dist. width of π 

(Dale)
Horn

Step

Dale

E.g. A. Rustamov (2012)

N. Otuka, P.K.Sahu, M. Isse, 
Y. Nara, AO, nucl-th/010205

Re-Hardening
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Hybrid Approaches

Both Hybrid model (Frankfurt) and 
PHSD (Giessen) show higher balance E.

J. Steinheimer, J. Auvinen, H. Petersen, 
M. Bleicher, H. Stöcker, PRC89 ('14) 054913

V. P. Konchakovski, W. Cassing, Yu. B. Ivanov, 
V. D. Toneev, PRC90('14)014903
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JAM results at AGS and SPS Energies

JAM w/ Mean-Field effects roughly explains v
1
 and v

2
 at AGS & 

SPS
(1-158 A GeV → √s

NN
 = 2.5-20 GeV)

M. Isse, AO, N. Otuka, P. K. Sahu, Y. Nara, PRC72('05)064908

y
v

1

√s
NN

=8.9 GeV √s
NN
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Highest Density Matter at J-PARC ?

大西、 JHF workshop (2002)
Central 1 fm3 cube.

Nara, Otuka, AO, 
Maruyama ('97)
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How do heavy-ion collisions look like ?

Au+Au, 10.6 A GeV Pb+Pb, 158 A GeV

http://www.jcprg.org/jow/JAMming on the Web

http://www.jcprg.org/jow/
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J-PARC energy

Au+Au, 25 AGeV, b=5 fm (JOW)
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QCD phase transition at BES (J-PARC) Energies ?

J-PARC Energies: √s
NN

 = 4-40 GeV (or √s
NN

 = 1.9-6.2 GeV)

E(p)=30 GeV → E(Au) ~ 12 AGeV (full strip, √s
NN

 =  5.1 GeV for 
Au+Au)

E(p)=50 GeV → E(Au) ~ 20 AGeV (√s
NN

= 6.4 GeV)

E(p)=30 GeV (50 GeV) Collider → √s
NN

= 26 GeV (42 GeV)

Two Aspects of J-PARC energies

Formation of highest baryon density matter

Various non-monotonic behaviors → Onset of deconfinement
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QCD phase transition at BES (J-PARC) Energies ?

J-PARC Energies: √s
NN

 = 4-40 GeV (or √s
NN

 = 1.9-6.2 GeV)

E(p)=30 GeV → E(Au) ~ 12 AGeV (full strip, √s
NN

 =  5.1 GeV for 
Au+Au)

E(p)=50 GeV → E(Au) ~ 20 AGeV (√s
NN

= 6.4 GeV)

E(p)=30 GeV (50 GeV) Collider → √s
NN

= 26 GeV (42 GeV)

Two Aspects of J-PARC energies

Formation of highest baryon density matter

Various non-monotonic behaviors → Onset of deconfinement

Question
Do these Non-mono. behaviors signal the onset of 

QCD phase transition and/or QCD critical point ?
or Do they show some properties of hadronic matter ?
→ Let's examine in hadronic transport models !

Question
Do these Non-mono. behaviors signal the onset of 

QCD phase transition and/or QCD critical point ?
or Do they show some properties of hadronic matter ?
→ Let's examine in hadronic transport models !
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How to treat mean-field for excited matter?

Hadronic resonance dominant constituent quark dominant due to string

Model 1 JAM/M: potential for all formed baryons

Model 2 JAM/Mq: potentials for quarks inside the pre-formed hadrons

Model 3: JAM/Mf:  both formed and pre-formed baryons

√sNN=4.72GeV
√sNN=6.4GeV
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JAM hadronic cascade model : resonance and string excitation

Mean field by the  framework of the Relativistic Quantum Molecular Dynamics

Nuclear cluster formation by phase space coalescence.

Statistical decay of nuclear fragment

Hadronic transport Approach

Purpose ： Effects of hadron mean field potential on the directed flow v1
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Relativistic QMD/Simplified (RQMD/S)

RQMD/S:  Tomoyuki Maruyama, et al. Prog. Theor. Phys. 96(1996),263.

Sorge, Stoecker, Greiner, Ann. Phys. 192 (1989), 266.

RQMD based on Constraint Hamiltonian Dynamcis

Single particle energy:
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Relativistic QMD/Simplified (RQMD/S)

 

 

H i≡ pi
2
−mi

2
−2mi V i≈0

χ i≡â⋅(qi−qN )≈0 ( i=1,∼N −1) , χN≡â⋅qN−τ≈0
â=Time-like unit vector in the Calculation Frame

RQMD = Constraint Hamiltonian Dynamics
(Sorge, Stocker, Greiner, Ann. of Phys. 192 (1989), 266.)

Constraints: φ ≈ 0 (Satisfied on the realized trajectory, by Dirac)

Variables in Covariant Dynamics = 8N phase space: (q
μ
, p

μ
)

Variables in EOM = 6N phase space 
→ We need 2N constraints to get EOM 

On Mass-Shell Constraints

Time-Fixation in RQMD/S

(Tomoyuki Maruyama et al., Prog. Theor. Phys. 96(1996), 263.)
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RQMD/S (cont.)

H=∑i
 pi

2
−mi

2
−2miV i/2pi

0 , pi
0
=Ei= pi

2
mi

2
2miV i

d r i
d 

≈−
∂H
∂ pi

=
p

pi
0
∑ j

m j

p j
0

∂V j

∂ pi
,
d pi
d 

≈
∂H
∂ r i

=−∑ j

m j

p j
0

∂V j

∂ r i

Hamiltonian is made of constraints

Time Development

Lagrange multipliers are determined to keep constraints
→ We can obtain the multipliers analytically in RQMD/S

Equations of Motion 

d i

d 
≈0  i ,2N∑ j

u j {i , j}≈0

H=∑i
uii i=H i i=1~N  , i−N i=N1~2N 

d f
d 

=
∂ f
∂

{ f , H } , {q , p}=g 

We can include MF in an almost covariant way in molecular dynamicsWe can include MF in an almost covariant way in molecular dynamics
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Particle “DISTANCE”

rTij
2≡r r

−r P ij 
2
/P ij

2=r 2 in CM 

P ij≡ pi p j , r≡r i−r j

Particle “Momentum Difference”

pTij
2≡ p p

− p P ij

2
/P ij

2=p2 in CM 

p≡ pi− p j

Lorentz Invariant, and Becomes Normal Distance in CM !Lorentz Invariant, and Becomes Normal Distance in CM !
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