optimization Path modification method for the sign problem

Akira Ohnishi¹, Yuto Mori², Kouji Kashiwa¹ 1. Yukawa Inst. for Theoretical Physics, Kyoto U. 2. Dept. Phys., Kyoto U.

The 35th Int. Symp. on Lattice Field Theory June 18-24, 2017, Granada, Spain Lattice 2017

Y. Mori, K. Kashiwa, A. Ohnishi, arXiv:1705.05605

Introduction

- Sign problem for complex actions
 - Grand challenge in theor. phys.
 - Largest obstacle to explore QCD phase diagram
- Approaches
 - Taylor expansion, Analytic cont., Canonical, Strong coupling, ...
 - Complex Langevin method (CLM)
 G. Parisi ('83), G. Aarts et al. ('10)
 - Lefschetz thimble method (LTM)
 E. Witten ('10), Cristoforetti et al. ('12), Fujii et al. ('13)
 - Generalized LTM (GLTM) A. Alexandru, et al., ('16)

Complexified variables & Shifting path (area)

RHIC, LHC, Early Universe

Lattice QCD

 $\delta = (N-Z)/A$ (or Y_0 (hadron) = $Q_h/B \sim (1-\delta)/2$)

CP

OG.

Neutron Star

Heavy-Ion Collisions (BES, FAIR, NICA, J-PARC)

CSC

Quark Matter

T

0

Sym. E

Sym. Nucl.

Matter

Pure Neut Matter

Lefschetz, Thimble Method

 Integral over thimbles defined by the flow equation for complexified variables → Im S = const. on a thimble

$$\begin{aligned} \mathcal{Z} &= \int_{\mathcal{C}_{\mathbb{R}}} \mathcal{D}x e^{-S[x]} = \int_{\mathcal{C}} \mathcal{D}z e^{-S[z]} \\ \frac{\partial S}{\partial z_i}\Big|_{z_{\sigma}} &= 0 , \quad \frac{dz_i(t)}{dt} = \overline{\left(\frac{\partial S[z]}{\partial z_i}\right)} \\ \mathcal{C} &= \sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma} , \quad n_{\sigma} = \langle \mathcal{C}_{\mathbb{R}}, \mathcal{K}_{\sigma} \rangle \end{aligned}$$

Cons

- Phase from measure (residual sign prb.)
- Cancellation between thimbles (global sign prb.)
- Flow equation blows up somewhere.

Complex Langevin Method

Sample configurations by solving complex Langevin equation for complexified variables.

$$\frac{dz_i}{dt} = -\frac{\partial S}{\partial z_i} + \eta(t)$$
$$\langle \eta_i(t)\eta_j(t)\rangle = 2\delta_{ij}\delta(t-t')$$
$$\langle \mathcal{O}(x)\rangle = \langle \mathcal{O}(z)\rangle$$

Pros

Easier to apply to large DOF theories

Cons

- Excursion problem → Gauge Cooling (Seiler et al. ('13))
- Converged results can be wrong → Criteria (Nagata et al. ('16))
- Singular drift problem \rightarrow Several prescriptions

Is there any way to obtain the path without solving the flow equation and without suffering from singular points ?

Contents

- Introduction
- Path Optimization Method
- Application to a Toy Model
- Summary

Path Optimization Method

- Can we obtain the integration path without solving flow equation ?
 - → Variational shift of the integration path (Path Optimization Method: POM)
- POM Procedure
 - Parametrize the path appropriately (Trial Function)
 - Set a measure of sign problem (Cost Function)
 - Tune parameters to minimize the Cost Function (Optimization)

Sign Problem → Optimization Problem

 \mathcal{Z}

 $\mathrm{Re}z$

Trial Function, Cost Function, and Optimization

- Parametrize the path in the complex plane (Trial Function)
 - Ex. one variable case \rightarrow Expand in the complete set

$$z(t) = x(t) + iy(t)$$

= $t + \sum_{n} (c_n^{(x)} + ic_n^{(y)}) H_n(t)$
 $\mathcal{Z} = \int dt J(t) e^{-S(z(t))}, J(t) = \frac{dz(t)}{dt}$

- Set the seriousness of the sign problem (Cost Function)
 - How much the phase fluctuate

$$F[z(t)] = \frac{1}{2\mathcal{Z}} \int dt \left| e^{i\theta(t)} - e^{i\theta_0} \right|^2 \left| J(t)e^{-S[z(t)]} \right|$$
$$= \left| \langle e^{i\theta} \rangle_{pq} \right|^{-1} - 1 \quad \left[\theta = \arg(Je^{-S}), \ \theta_0 = \arg(\mathcal{Z}) \right]$$

Optimization: Gradient descent, Neural Network, ...

A (Pathological) Toy Model

A toy model with a serious sign problem

J. Nishimura, S. Shimasaki ('15)

$$\mathcal{Z} = \int dx (x + i\alpha)^p \exp(-x^2/2) = \int dx \exp(-S)$$
$$S(x) = \frac{x^2}{2} - p \log(x + i\alpha)$$

- **Complex Langevin Fails at Large** p and small α
 - Large $p \rightarrow$ Strong oscillation of the Boltzmann weight
 - Small $\alpha \rightarrow$ Singular point at $z = -i\alpha$ is close to the real axis

Optimized Path

Trial Function

Mori, Kashiwa, AO ('17)

$$z(t) = t + i \left[c_1 \exp(-c_2^2 t^2/2) + c_3 \right]$$

- Optimization = Gradient descent
- Optimized path agrees with thimble(s) around the fixed point(s) !
 - Large $\alpha \rightarrow$ One thimble, Singular point is far away from thimble
 - Small $\alpha \rightarrow$ Go through two FPs.

Expectation Value of x^2

- Hybrid MC results of <x²> on the optimized path well reproduce the exact results.
- Trick: ±x (=± Re(z)) gives same |J e^{-s}| → Both ±x configurations are taken.
- Global sign prob. is not solved (and should not be solved).

Do we need to know the form of Trial Function ?

- What happens for many variables ? Trial fn. form, Variable corr., CPU cost, ...
- Neural Network
 - Combination of linear transf. + Non-linear network fn. g(x).

Optimized Path by Neural Network

Optimized paths are different, but both reproduce thimbles around the fixed points !

Mori, Kashiwa, AO (in prep.)

Summary

- Path Optimization Method is proposed to attack the sign problem.
 - Path is parametrized by the Trial Function.
 - Seriousness of the sign problem is given by the Cost Function.
 - Sign problem is regarded as the Optimization Problem.
- Usefulness of POM is demonstrated in a toy model.
 - Optimized path reproduces the thimble(s) around the fixed point(s).
 - Singular points with zero Boltzmann weight do not matter, since they do not contribute to the integral.
 - Global sign problem is unsolved (and should not be solved).
- It is possible to apply various optimization technique such as the neural network.

Application to Complex φ^4 model

4x4 lattice

Optimized Path by Neural Network

Ohnishi @ Lattice 2017, June 22, 2017 19

Average Phase Factor

- Boltzmann weight cancellation
 - Cancellation is mild at α > 14.
 - Weights at $\pm x$ strongly cancel with each other for $\alpha < 14$.

Ohnishi @ Lattice 2017, June 22, 2017 20