Unitary gas constraint on nuclear symmetry energy

Akira Ohnishi (YITP)

YITP Lunch Seminar, July 5, 2017

Introduction: What is unitary gas ?

- Relevance to nuclear symmetry energy
- Conclusion

Based on

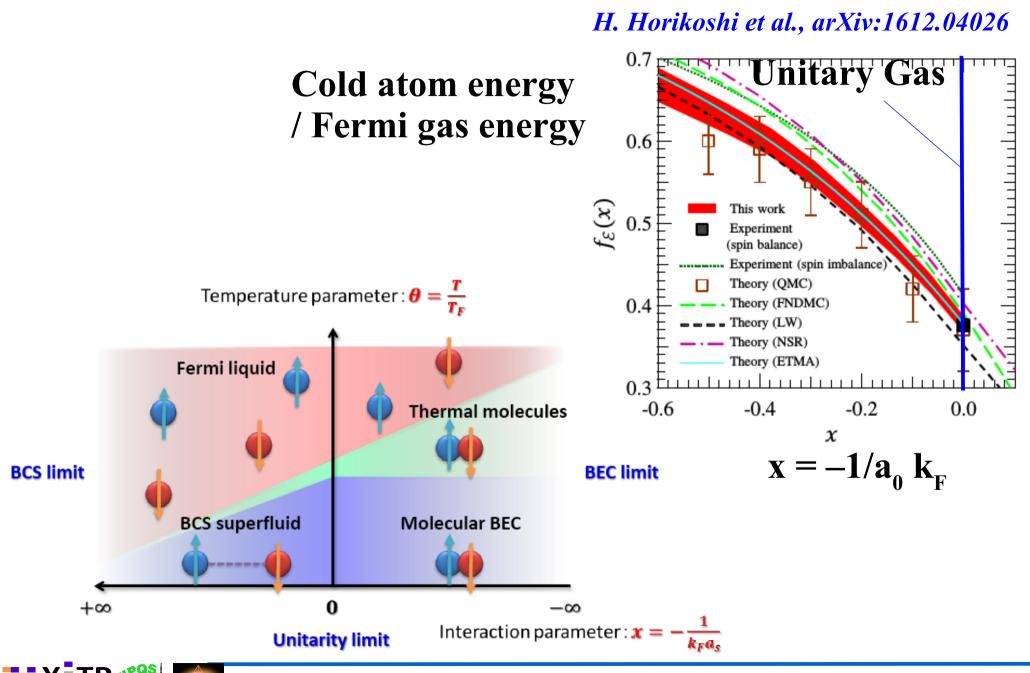
Symmetry Parameter Constraints from a Lower Bound on the Neutron-Matter Energy,
I. Tews, J. M. Lattimer, A. Ohnishi, E. E. Kolomeitsev, arXiv:1611.07133v2 [nucl-th]

What is Unitary Gas ?

Q: What are the ground state properties of the many-body system composed of spin ½ fermions interacting via a zero-range, infinite scattering length contact interaction. (Bertsch ('99), Seattle)

$$H = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} v(r_{ij}), \quad k \cot \delta(k) = -\frac{1}{a_0} + \frac{1}{2} r_{\text{eff}} k^2,$$

$$\begin{array}{rcl} \textbf{phase shift} \\ \textbf{Unitary Gas:} \quad a_0 k_F \to \infty, \quad r_{\text{eff}} k_F \to 0. \end{array}$$


- a_0 =scattering length, r_{eff} =effective range, k_F = Fermi momentum
- Negative a0 means there is no bound state (BCS regime).
- A: Proportional to Fermi gas energy with a positive coef.

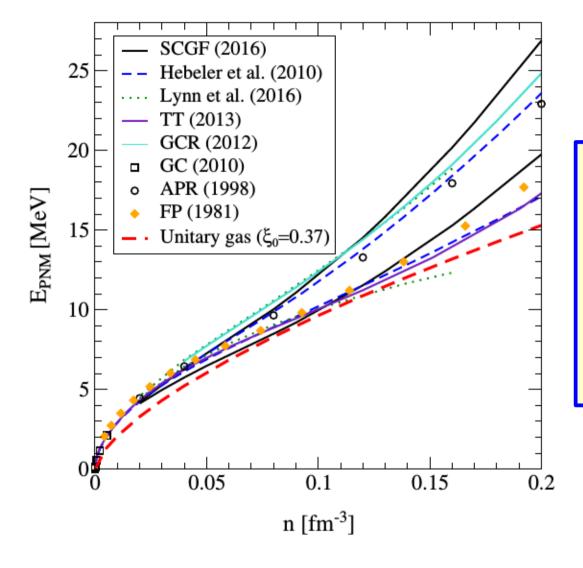
$$E_{\rm UG} = \xi E_{\rm FG} = \frac{3}{5} \frac{\hbar^2 k_F^2}{2m} \times \xi \quad (\xi \simeq 0.37, \text{Bertsch parameter})$$

• There is no typical scale length scale than k_F in unitary gas !

What is Unitary Gas ?

Next Questions (T=0, spin-half fermions)

- Zero range s-wave int. E_{IIC} = lower bound of $E(a_0 < 0, r_{eff} = 0, s$ -wave two-body)?
 - True (measured & theoretically confirmed)
- Finite range s-wave int.


 E_{UG} = lower bound of $E(a_0 < 0, \text{ s-wave two-body})$?

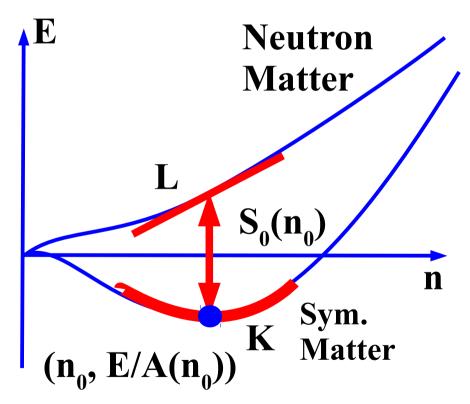
- Yes, at least for $r_{eff} k_{F} < 5$ Quantum MC, Gandolfi et al. ('15), Schwenk, Pethick ('05)
- Objection ! Attractive Hartree term (\propto n) appears for finite r_{eff}. P. van Wyk, Y. Ohashi et al. (in prep.)
- Nuclear Interaction with p-wave, d-wave, 3-body force, E_{UG} = lower bound of E (neutron matter) ?
 - Large nn scattering length ($a_0 = -18.9 \text{ fm}$) \rightarrow Close to UG
 - Ab initio calc. support this conjecture at $n < 1.5 n_0$. **This Lunch Seminar**

 $(n_0 = saturation density)$

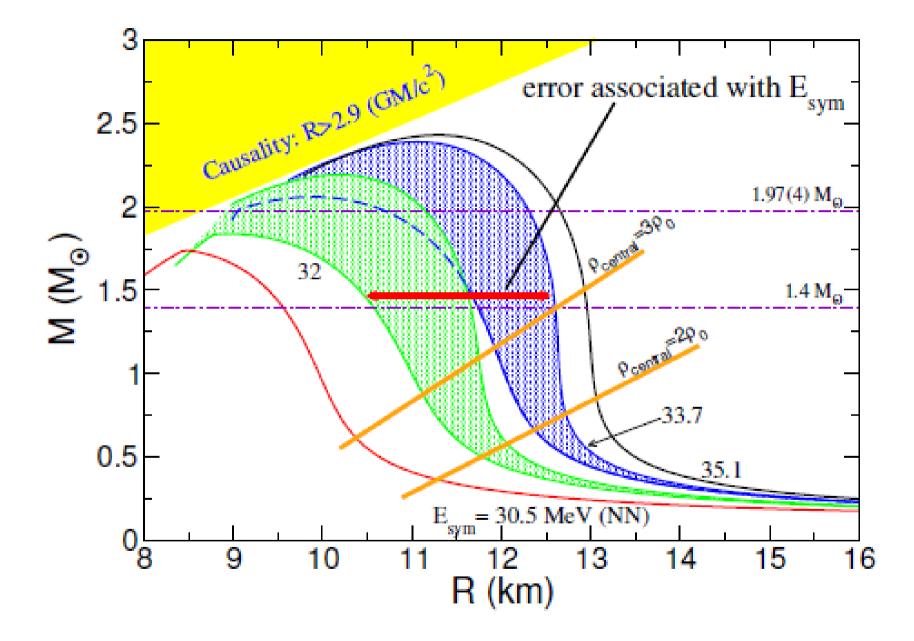
Neutron Star Matter

Neutron Matter EOS at low densities

MC, variational, resummation,


Most of ab initio calculations with realistic nuclear Hamiltonian suggest E(neutron matter) > E(unitary gas)

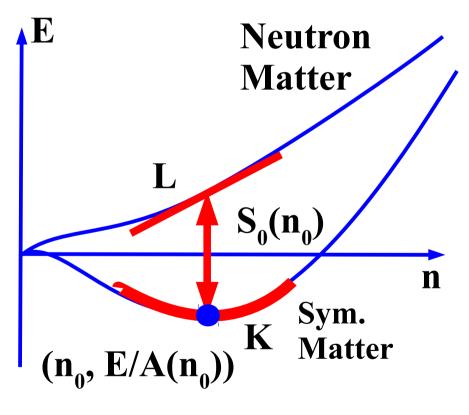
Tews, Lattimer, AO, Kolomeitsev, arXiv:1611.07133


Unitary Gas Constraint on Nuclear Symmetry Energy

- Sym. E. = E(neutron matter) E(sym. nucl. matter(N=Z)) (E=Energy / particle)
- Sym. E. can be measured by laboratory experiments, and determines the neutron star radius.

Symmetry Energy affects MR Relation of NS

Gandolfi, Carlson, Reddy, PRC 032801, 85 (2012).


Unitary Gas Constraint on Nuclear Symmetry Energy

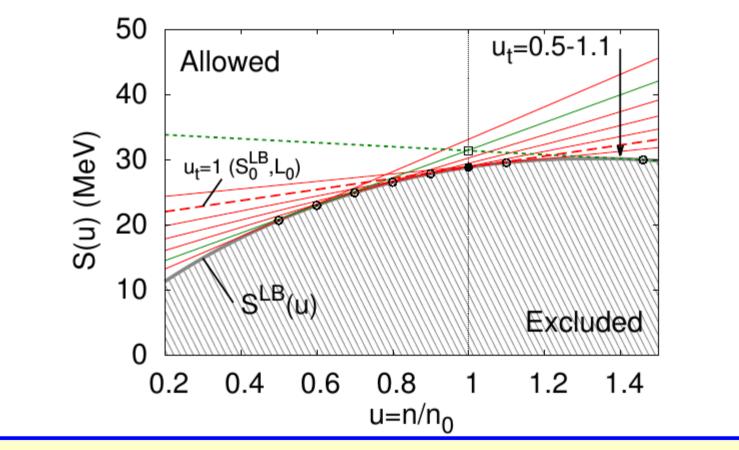
- Sym. E. = E(neutron matter) E(sym. nucl. matter(N=Z)) (E=Energy / particle)
- Sym. E. can be measured by laboratory experiments, and determines the neutron star radius.
- Unitary Gas Conjecture
 + Sym. nucl. matter EOS
 → Lower Bound of Sym. E.

$$E_{\text{PNM}}(u) \ge E_{\text{UG}}(u) = E_{\text{UG}}^0 u^{2/3}$$

$$\rightarrow S(u) = E_{\text{PNM}}(u) - E_{\text{SNM}}(u)$$

$$\ge E_{\text{UG}}^0 u^{2/3} - E_{\text{SNM}}(u)$$

UG $k_{\rm F}^2 \propto n^{2/3}$ Sym. NM

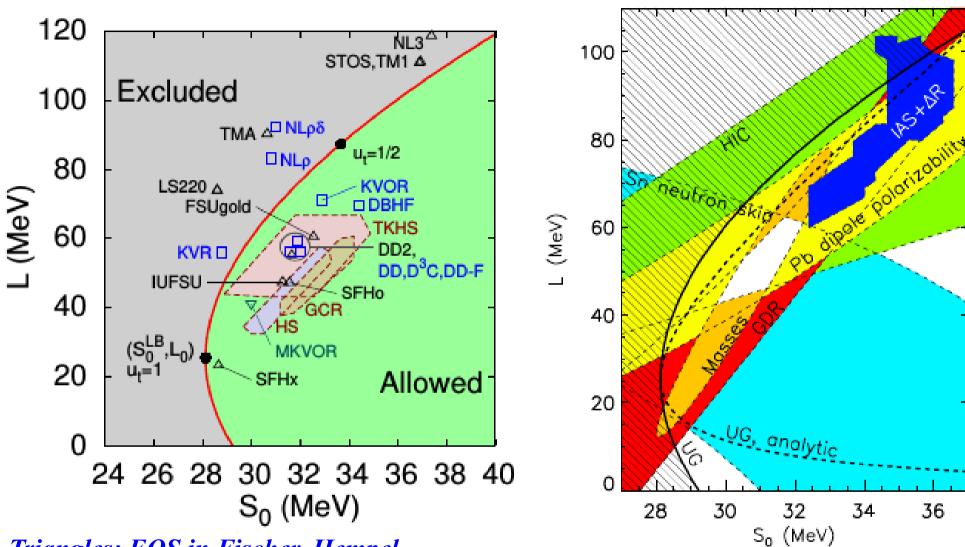

 $u=n/n_0$ (n_0 =sat. density)

Tews, Lattimer, AO, Kolomeitsev, arXiv:1611.07133

Symmetry Energy Parameters (S_0, L)

Approximate density dep. of Sym. E.

$$S(u) = S_0 + \frac{L}{3}(u-1) \ge E_{\text{UG}}^0 u^{2/3} - (E_0 + \frac{K}{18}(u-1)^2)$$



For a given slope at n_0 (L/3), there is a lower bound in S_0 .

Tews, Lattimer, AO, Kolomeitsev, arXiv:1611.07133

Unitary Gas Constraint on S₀ and L

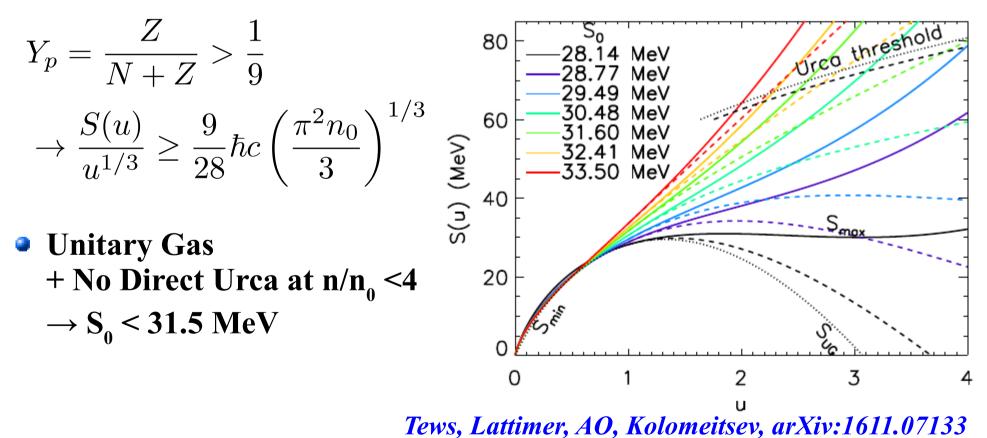
Triangles: EOS in Fischer, Hempel, Sagert, Suwa, Schaffner-Bielich ('14) \rightarrow 3 (SFHo, SFHx, DD2) out of 10 remains.

UG constraint is consistent with experiments.

Tews, Lattimer, AO, Kolomeitsev, arXiv:1611.07133

Summary

- Cold atoms around the unitary limit are quantum simulator of neutron matter, in which the scattering length is very large, a₀ = - 18.9 fm.
- The neutron matter energy with realistic nuclear interaction seems to be greater than that of unitary gas.
 - Question: E($1/a_0 k_F = 0, r_{eff} = 0$) < E (two-body, s-wave, $a_0 < 0$) ??
- If this conjecture is true, symmetry energy is non-trivially constrained, provided that we know the symmetric nuclear matter EOS, S > E_{UG} E_{SNM}.


Symmetry energy parameters are also constrained.

 Only a few tabulated EOSs among active astrophysics use have survived 2M_o constraint and the unitary gas constraint. (We need more EOSs.)

Do I have time ?

- Further constraint from Urca process
 - Direct Urca process ($n \rightarrow p+v+e, p \rightarrow n+v+e^+$) cools NS rapidly.
 - Only a small fraction of NSs cools rapidly.
 → Direct Urca is allowed only at high density.
 - Direct Urca is allowed when

