最適化問題としての符号問題

大西明(京大基研) in collaboration with 森勇登(M2,京大理),柏浩司(京大基研)

新潟大学物理教室コロキウム, Dec.12, 2017

Y. Mori, K. Kashiwa, A. Ohnishi, Phys. Rev. D 96 (2017), 111501(R) [arXiv:1705.05605] Y. Mori, K. Kashiwa, A. Ohnishi, arXiv:1709.03208.

Introduction

- Sign problem for complex actions
 - Grand challenge in theor. phys.
 - Largest obstacle to explore QCD phase diagram
- Approaches
 - Taylor expansion, Analytic cont., Canonical, Strong coupling, ...
 - Complex Langevin method (CLM)
 G. Parisi ('83), G. Aarts et al. ('10)
 - Lefschetz thimble method (LTM)
 E. Witten ('10), Cristoforetti et al. ('12), Fujii et al. ('13)
 - Generalized LTM (GLTM) A. Alexandru, et al., ('16)

Complexified variables & Shifting path (area)

Finite Density QCD

T. Ichihara, A. Ohnishi, T.Z. Nakano, PTEP 2014,123D02 [1401.4647].

C.R. Allton, M. Doring, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, K. Redlich, Phys. Rev. D 71, 054508 (2005), hep-lat/0501030

Lefschetz, Thimble Method

Integral over thimbles defined by the flow equation for complexified variables \rightarrow Im S = const. on a thimble

Pons

Has mathematically solid base.

Cons

- Phase from measure (residual sign prb.)
- **Cancellation between thimbles (global sign prb.)**
- Flow equation blows up somewhere.

Complex Langevin Method

Sample configurations by solving complex Langevin equation for complexified variables.

$$\frac{dz_i}{dt} = -\frac{\partial S}{\partial z_i} + \eta(t)$$
$$\langle \eta_i(t)\eta_j(t)\rangle = 2\delta_{ij}\delta(t-t')$$
$$\langle \mathcal{O}(x)\rangle = \langle \mathcal{O}(z)\rangle$$

Pros

Easier to apply to large DOF theories

Cons

- Excursion problem → Gauge Cooling (Seiler et al. ('13))
- Converged results can be wrong → Criteria (Nagata et al. ('16))
- Singular drift problem \rightarrow Several prescriptions

Is there any way to obtain the path without solving the flow equation and without suffering from singular points ?

- Introduction
- Path Optimization Method
- Application
 - One Variable Toy Model
 - Neural Network
 - Two dimensional complex $\lambda \phi^4$ theory
- Summary

Path Optimization Method

- Can we obtain the integration path without solving flow equation ?
 - → Variational shift of the integration path (Path Optimization Method: POM)
- POM Procedure
 - Parametrize the path appropriately (Trial Function)
 - Set a measure of sign problem (Cost Function)
 - Tune parameters to minimize the Cost Function (Optimization)

Sign Problem → Optimization Problem

 $\mathrm{Re}z$

 \mathcal{Z}

Trial Function, Cost Function, and Optimization

- Parametrize the path in the complex plane (Trial Function)
 - Ex. one variable case \rightarrow Expand in the complete set

$$z(t) = x(t) + iy(t)$$

= $t + \sum_{n} (c_n^{(x)} + ic_n^{(y)}) H_n(t)$
 $\mathcal{Z} = \int dt J(t) e^{-S(z(t))}, J(t) = \frac{dz(t)}{dt}$

Set the seriousness of the sign problem (Cost Function)

How much the phase fluctuate

$$F[z(t)] = \frac{1}{2\mathcal{Z}} \int dt \left| e^{i\theta(t)} - e^{i\theta_0} \right|^2 \left| J(t)e^{-S[z(t)]} \right|$$
$$= \left| \langle e^{i\theta} \rangle_{pq} \right|^{-1} - 1 \quad \left[\theta = \arg(Je^{-S}), \ \theta_0 = \arg(\mathcal{Z}) \right]$$

Optimization: Gradient descent, Neural Network, ...

Merits of using Path Optimization Method

Integral on an integral path

$$\mathcal{Z} = \int dt (dz/dt) \exp(-S[z(t)]) , \quad \langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int dt (dz/dt) \mathcal{O}(z(t)) \exp(-S[z(t)])$$

- → Partition function and observable average are independent of the path due to the Cauchy(-Poincare) theorem, as long as,
 - the path do not go across the singular points of exp(-S),
 - and the contribution from Re $z \rightarrow \pm \infty$ is negligible.
- We do not have to care the singular points of the action (S), as long as exp(-S) is not singular.
- Demerits
 - There is no guiding principle to modify the path except for reducing the cost function.
 - Then, the number of parameters are large and large CPU power is required.

Application (1) One variable toy model

A (Pathological) Toy Model

A toy model with a serious sign problem

J. Nishimura, S. Shimasaki ('15)

$$\mathcal{Z} = \int dx (x + i\alpha)^p \exp(-x^2/2) = \int dx \exp(-S)$$
$$S(x) = \frac{x^2}{2} - p \log(x + i\alpha)$$

- **Complex Langevin Fails at Large** p and small α
 - Large $p \rightarrow$ Strong oscillation of the Boltzmann weight
 - Small $\alpha \rightarrow$ Singular point at $z = -i\alpha$ is close to the real axis

Optimized Path

Trial Function

Mori, Kashiwa, AO ('17)

$$z(t) = t + i \left[c_1 \exp(-c_2^2 t^2/2) + c_3 \right]$$

- Optimization = Gradient descent
- Optimized path agrees with thimble(s) around the fixed point(s) !
 - Large $\alpha \rightarrow$ One thimble, Singular point is far away from thimble
 - Small $\alpha \rightarrow$ Go through two FPs.

Expectation Value of x^2

- Hybrid MC results of <x²> on the optimized path well reproduce the exact results.
- Trick: ±x (=± Re(z)) gives same |J e^{-s}| → Both ±x configurations are taken.
- Global sign prob. is not solved (and should not be solved).

Boltzmann Weight on Optimized Path

It's just an accident ! POM works only in cases you know thimbles and you can prepare the trial function which easily mimic thimbles !

We want to make an objection ! POM works even if we do not specify the function form but use a general form of functions provided by a neural network !

Optimized Path by Neural Network

Optimized paths are different, but both reproduce thimbles around the fixed points !

Mori, Kashiwa, AO (in prep.)

経路最適化法 ニューラルネットワーク

●格子上の場の理論・・・多変数

●積分経路に適切な関数形は非自明

ニューラルネットワーク

$$z_{i}(t) = t_{i} + i(\alpha_{i}f_{i}(t) + \beta_{i})$$

$$\begin{cases}
a_{i} = g(W_{ij}^{(1)}t_{j} + b_{i}^{(1)}) \\
f_{i} = g(W_{ij}^{(2)}a_{j} + b_{i}^{(2)})
\end{cases}$$

 $g(x):活性化関数 (tanh 等) ※ <math>W, b, \alpha, \beta$ がパラメータ

® Kashiwa

Y. Mori, **K.K.** and A. Ohnishi, arXiv:1705.05605, to be published in PRD

Y. Mori, **K.K.** and A. Ohnishi, arXiv:1709.03208

In the original method,

we prepare functional forms of the trial function by hand

It takes our research time …

Human power

Next: Brief explanation of neural network

w : Weight b : bias

® Kashiwa

In this case, we will obtain the result;

$$y = wx + b$$

It only contains simple addition and multiplication processes

(Usually $\$ we put the step function in the perceptron; the output becomes 0 or 1)

W

Х

Explanation of Neural network : Neural network

® Kashiwa

Explanation of Neural network : Neural network

® Kashiwa

To perform nonlinear calculation, we should add the hidden layer and the activation function

Parameters are determined via the back-propagation

We use tanh as the activation function

Explanation of Neural network : Neural network

® Kashiwa

Real part of the integral path is input and then the imaginary part becomes output We develop the numerical code by Fortran

Rough flow-chart of the path optimization method

- 1. Input the real part of the integral path (Hybrid Monte-Calro + mini-batch training)
- 2. Estimate gradients of the cost function from upstream (Back-propagation)
- 3. Update parameters (Stochastic gradient decent 、 AdaGrad, Adadelta etc…)
 - 4. Output the imaginary part of the integral path (Exponential moving average)

® Kashiwa

"Deep"Neural network

Even in the simple NN, we can approximate **arbitral continuous functions**

It works well in the path optimization method

Universal approximation theorem

- G. Cybenko, MCSS 2, 303 (1989)
- K. Hornik, Neural networks 4, 251 (1991)

3® Mori

• 2D Lattice

$$S = \sum_{x} \left[(4+m^2)\phi_x^* \phi_x + \lambda (\phi_x^* \phi_x)^2 - \sum_{\nu=0}^{1} (\phi_x^* e^{-\mu \delta_{\nu,0}} \phi_{x+\hat{\nu}} + \phi_{x+\hat{\nu}}^* e^{+\mu \delta_{\nu,0}} \phi_x) \right]$$

• 積分変数

$$\phi = \frac{1}{\sqrt{2}}(x_1 + ix_2)$$
 積分変数 x_1, x_2 について作用 は解析的
 $\longrightarrow x_1, x_2$ それぞれを複素化

 $z_i(t) = t_i + i(\alpha_i f_i(t) + \beta_i)$

以下の計算では $m = 1, \lambda = 1$ の場合を考える

Average Phase Factor

Number Density

Y. Mori, K. Kashiwa, AO, 1709.03208

Complex $\lambda \phi^4$ Theory

Mean Field Approximation

$$\begin{split} \frac{S}{V} &= \left(1 + \frac{m^2}{2} - \cosh\mu\right)\phi^2 + \frac{\lambda}{4}\phi^4 \ ,\\ n &= \phi^2 \sinh\mu \ ,\\ \phi_{\text{stat.}}^2 &= \begin{cases} 0 & (|\mu| < \mu_c) \ ,\\ \frac{2}{\lambda}(\cosh\mu - 1 - \frac{m^2}{2}) & (|\mu| \ge \mu_c) \ , \end{cases} \end{split}$$

Spontaneous symmetry breaking takes place at $\mu > \mu_c = 0.962...$

Field Configuration

Y. Mori, K. Kashiwa, AO, 1709.03208

Summary

- **Path Optimization Method for the sign problem is proposed.** \rightarrow Sign problem can be regarded as an optimization problem.
- Usefulness of POM is demonstrated in a toy model.
 - Optimized path reproduces the thimble(s) around the fixed point(s).
 - Singular points with zero Boltzmann weight do not matter, since they do not contribute to the integral.
- POM is applied to field theory with optimization using neural network.
 - Optimization with small human power (large computer power).
 - Two dim. ϕ^4 theory seems to be solved well.
 - Spontaneous symmetry breaking takes place.
- Stay tuned.

Parameter update

ADADELTA algorithm: Sophisticated gradient descent method

$$\begin{aligned} c_i^{(j+1)} &= c_i^{(j)} - \eta v_i^{(j+1)} \\ v_i^{(j+1)} &= \frac{\sqrt{s_i^{(j)} + \epsilon}}{\sqrt{r_i^{(j+1)} + \epsilon}} F_i^{(j)} \quad (F_i = \partial \mathcal{F}_{\text{cost}} / \partial c_i) \\ r_i^{(j+1)} &= \gamma r_i^{(j)} + (1 - \gamma) (F_i^{(j)})^2, \quad s_i^{(j+1)} = \gamma s_i^{(j)} + (1 - \gamma) (v_i^{(j+1)})^2, \end{aligned}$$

η = learning rate, γ =decay rate (survival rate)

Batch training (average of the derivative with several conigs.)

$$F_i \rightarrow \frac{1}{N_{\text{batch}}} \sum_{k=1}^{N_{\text{batch}}} F_i(t^{(k)}, c).$$

