Nuclear matter symmetry energy and neutron star properties ---- Neutron star radius from gravitational wave vs nuclear experiments --

Akira Ohnishi

(Yukawa Inst. for Theor. Phys., Kyoto U.) in collaboraton with

E. E. Kolomeitsev (Matej Bel U.), James M. Lattimer (Stony Brook), Ingo Tews (LANL), Xuhao Wu (Nankai U./YITP)

Gravitational wave physics and astronomy: Genesis, 2nd annual area symposium, Nov.26-28, 2018, Kyoto, Japan

- I. Tews, J. M. Lattimer, AO, E.E.Kolomeitsev, ApJ 848('17) 105 [arXiv:1611.07133]
- AO, Kolomeitsev, Lattimer, Tews, X.Wu, in prog.

Contents

- Introduction
 - Gravitational Wave from Binary Neutron Star Merger
 - Neutron Star Matter Mass-Radius Curve and EOS
- Nuclear Matter EOS constraints
 - Saturation and Symmetry Energy Parameters
 - Effects of higher-order Sym. E. parameters on Neutron Star Radius
- Implications to quark-hadron physics in cold dense matter
 - Neutron chemical potential, QCD phase transition
 - EOS softening signal from heavy-ion collisions
- Summary

Impact of GW from binary neutron star merger

- GW170817 from NS-NS → Multi messenger astrophysics B.P.Abbott+ [LIGO Sci. and Virgo Collab.], PRL119('17)161101
- Neutron Star Maximum Mass
 - No prompt collapse, No GW signal from Hyper Massive NS \rightarrow Mmax(T=0, ω =0) < Mmax(T=0, ω) < M < Mmax(T, ω)
- Neutron Star Radius
 - Inspiral region \rightarrow Tidal deformability (Λ) \rightarrow NS radius (e.g. R1.4)
- Nucleosynthesis site of r-process nuclei
 - kilonova/macronova from decay energy of the synthesized elements
 - r-process nucleosynthesis seems to occur in BNSM !
- Central Engine of (Short) Gamma-Ray Bursts
- GW as standard siren (Hubble constant)

Courtesy of Y. Sekiguchi @ YKIS2018b

(ρ, T, Y_{e}) during SN, BH formation, BNSM

QCD Phase Diagram

QCD Phase Diagram

Constraints on EOS from GW170817

MR curve from X-ray burst

Neutron Star Radius from Astronomical Observations

- From X-ray bursts
 - R=9 or 11 km (7.5-11 km) F. Özel+, ApJ693('09)1775 [touch down = Eddington limit?]
 - R>14 km V.Suleimanov+, ApJ742('11)122 [color correcton factor ?]
 - R=9.1^{+1.3}_{-1.4} km *S.Guillot+, ApJ772('13)7* [Common R ?; Denied later by the authors in ApJ 796('14)L3 (1409.4306)]
 - R=10.4-12.7 km *J.M.Lattimer, A.W.Steiner, ApJ784('14)123* (R=(11.15-12.66) km (normal EOS), R=(10.45-12.45) km (Exo EOS))
- Gravitational Waves
 - $\overline{\Lambda} < 800 \text{ B.P.Abbott+,PRL119('17)161101} \rightarrow R < 13.6 \text{ km}$
 - $\overline{\Lambda}=300^{+420}_{-230} \rightarrow R=(10.5-13.3) \text{ km}$ B.P.Abbott+ (LIGO-Virgo), 1805.11579
 - $\overline{\Lambda} = 222^{+420}_{-138} \rightarrow R = (9.1-14.0) \text{ km}$
 - $\overline{\Lambda}$ <800 & M_{max}>2 M_o \rightarrow R < 13.6 km

S.De+, PRL121('18)091102

Time dependence of Neutron Star Radius $(R_{1.4})$

Constraints from Nuclear Physics (+a)

Neutron Star Radius from Nuclear Physics (+α)

- **Impact of 2** M_{\odot} neutron star
 - P.Demorest+, Nature 467('10)1081 (1010.5788), J.Antoniadis+, Science340('13)6131(1304.6875)
 - R=(6-15) km (before 2010) \rightarrow R=(10-15) km (with 2 M_{\odot})
- Impact of symmetry energy parameters
 - $S_0 \rightarrow R=(10.5-13) \text{ km}$ S.Gandolfi, J.Carlson, S.Reddy, PRC85('12)032801
 - $(S_0,L) \rightarrow R=(10.7-13.1) \text{ km } J.M.Lattimer, M.Prakash, PRep. 621('16)127$
- Chiral Effective Field Theory (Chiral EFT)

 - Neutron skin thickness from v scatt. (PREX) → R=(12.0-13.6) km F.J. Fattoyev, J. Piekarewicz, C.J. Horowicz, PRL120 ('18)172702

Time dependence of Neutron Star Radius ($R_{1.4}$)

Symmetry Energy Parameters (S_0 , L) affect Neutron Star Radius. How about higher-order parameters ?

Symmetry Energy Parameters, Nuclear Matter EOS, and Neutron Star Radius

Constraint on (S_{o}, L) from Lower Bound of PNM Energy

■ Unitary gas ($E_{PNM} > E_{UG}$) + 2 M_☉ constraints rule out 5 EOSs (incl. LS220, Shen) out of 10 numerically tabulated ones.

Further Constraints on Higher-Order Sym. E. parameters **K**_n and Q_n are correlated with L in "Good" theoretical models. $K_n = 3.534L - (74.02 \pm 21.17) \text{MeV}$ $Q_n = -7.313L + (354.03 \pm 133.16) \text{MeV}$ Skyrme a 650 Skvrme a 1500 Skyrme r Skyrme r RMF a RMF a RMF r RMF r 4501000 500 $K_n [\mathrm{MeV}]$ 250 $\mathcal{Q}_n [\mathrm{MeV}]$ 50 $K_{n,0}$ -500-150

Regard theoretical models as data !

150

-1000

-50

I. Tews, J.M.Lattimer, AO, E.E.Kolomeitsev (TLOK), ApJ 848 ('17)105

0

-350

-50

0

50

100

A. Ohnishi @ GWPA:Genesis 2nd symp., Nov. 28, 2018 18

100

150

50

Fermi momentum (k_F) expansion

Saturation & Symmetry Energy Parameters

 $E_{\rm NM}(u,\alpha) = E_{\rm SNM}(u) + \alpha^2 S(u)$ $E_{\rm SNM}(u) \simeq E_0 + \frac{K_0}{18}(u-1)^2 + \frac{Q_0}{162}(u-1)^3$ $S(u) \simeq S_0 + \frac{L}{3}(u-1) + \frac{K_s}{18}(u-1)^2 + \frac{Q_s}{162}(u-1)^3$ $(u = n/n_0, \alpha = (n_n - n_p)/n)$

TLOK

Energy does not approach zero at $n \rightarrow 0$.

- Fermi momentum expansion (~ Skyrme type EDF)
 - Generated many-body force is given by $k_F \propto u^{1/3} \longrightarrow \mathbf{m}^*$

$$E_{\text{SNM}}(u) \simeq T_0 u^{2/3} + a_0 u + b_0 u^{4/3} + c_0 u^{5/3} + d_0 u^2$$

$$S(u) \simeq T_s u^{2/3} + a_s u + b_s u^{4/3} + c_s u^{5/3} + d_s u^2$$

Kin. E. Two-body Density-dep. pot.

Expansion Coefficients

Coefficients (a,b,c,d) are represented by Saturation and Symmetry Energy Parameters			TLOK
$a_0 = -4T_0$	$+20E_{0}$	$+ K_0$	$-Q_{0}/6$
$b_0 = 6T_0$	$-45E_{0}$	$-5K_{0}/2$	$+Q_{0}/2$
$c_0 = -4T_0$	$+36E_{0}$	$+2K_{0}$	$-Q_{0}/2$
$d_0 = T_0$	$-10E_{0}$	$-K_{0}/2$	$+Q_{0}/6$
$a_s = -4T_s$	$+20S_0 - 19L/3$	$+ K_s$	$-Q_s/6$
$b_s = 6T_s$	$-45S_0 + 15L$	$-5K_s/2$	$+Q_s/2$
$c_s = -4T_s$	$+36S_0 - 12L$	$+2K_s$	$-Q_s/2$
$d_s = T_s$	$-10S_0 + 10L/3$	$-K_s/2$	$+Q_s/6$
$\left(T_0 = \frac{3}{5} \frac{\hbar^2 k_F(r)}{2m}\right)$	$\frac{n_0)^2}{n}, T_s = T_0(2^{1/3} - 1)$	())	

Tedious but straightforward calc.

TLOK+2 M_{\odot} constraints

- TLOK constraints
 - (S₀, L) is in Pentagon.
 - (K_n, Q_n) are from TLOK constraint.
 - K₀=(190-270) MeV
 - (n_0, E_0) is fixed $n_0=0.164 \text{ fm}-3, E_0=-15.9 \text{ MeV} (small uncertainties)$
 - Q₀ is taken to kill d₀ parameter
 (Coef. of u². Sym. N. M. is not very stiff at high-density)
- **2** \mathbf{M}_{\odot} constraint
 - $\bullet\,$ EOS should support 2 M_\odot neutron stars.

AO, Kolomeitsev, Lattimer, Tews, Wu (OKLTW), in prog.

TLOK+2 M_{\odot} constraints on EOS

- $\blacksquare~2M_{\odot}$ constraint narrows the range of EOS.
- Consistent with FP and TT(Togashi-Takano) EOSs.
- APR and GCR(Gandolfi-Carlson-Reddy) EOSs seems to have larger S₀ values.

Neutron Star MR curve

- **TLOK + 2** M_{\odot} constraints $\rightarrow R_{1.4}$ =(10.6-12.2) km
 - E and P are linear fn. of Sat. & Sym. E. parameters
 Min./Max. appears at the corners of pentagon (ABCDE).
 - For a given (S₀, L), unc. of R_{1.4} ~ 0.5 km
 = unc. from higher-order parameters
 - Unc. from (S₀, L) ~ 1.1 km
 → We still need to fix (S₀, L) more precisely.

OKLTW, in prog.

Neutron Star MR curve

- Our constraint is consistent with many of previous ones.
 - $R_{1.4} = (10.6-12.2) \text{ km Present work (TLOK + 2 M_{\odot}) OKLTW, in prog.}$
 - LIGO-Virgo (Tidal deformability Λ from BNSM) (10.5-13.3) km *Abbott+('18b)* (9.1-14.0) km *De+('18)* (Λ)
 2.5
 - Theoretical Estimates

 (10.7-13.1) km
 Lattimer+, PRep.621('16)127
 - (10.0-13.6) km Annala+,PRL120('18)172703
 - (9-13.6) km *Tews+, PRC98 ('18)045804*

(12.0-13.6) km F.J.Fattoyev+(PREX), PRL120 ('18)172702

Time dependence of Neutron Star Radius ($R_{1.4}$)

Implications to quark-hadron physics in cold dense matter

Questions !

- Hyperon puzzle
 - At what density do hyperons appear $? \to U_\Lambda^{}= \mu_n$
 - In STANDARD EOS with hyperons with $U_{\Lambda}(n_0)$ =-30 MeV, Λ appears at n=(2-3)n_0
 - Density dep. of U_{Λ} is essential.
 - Neutron chemical potential strongly depends on sym. E.
- QCD phase transition in cold dense matter
 - Do we have the first order phase transition in cold dense matter ? If yes, at which density ?
 - Recent high-energy heavy-ion collision data suggest strong softening of EOS at n=(5-10) n₀.
 - With hadronic matter EOS with L=50 MeV and NJL model, mixed phase would appear at n=(5-10) n₀ in neutron stars.

Neutron Chemical Potential in NS

- A appears in neutron stars if E_{Λ} (p=0) = $M_{\Lambda}+U_{\Lambda} < \mu_n$
- **U**_{Λ} in χ EFT (2+3 body) is stiff.
- **But** μ_n is larger with TLOK+2M_{\odot} constraints

Neutron Chemical Potential in NS

Neutron Chemical Potential

$$\mu_n + M_N = \frac{\partial(nE)}{\partial n_n} = E + u\frac{\partial E}{\partial u} + 2\alpha(1-\alpha)S(u)$$

Single particle potential

QCD phase transition in cold dense matter

- Transition to quark matter in cold-dense matter 1st order or crossover ?
- Crossover: Masuda, Hatsuda, Takatsuka, Kojo, Baym, ...
- Ist order p.t.
 - Many effective models predict, e.g. Asakawa-Yazaki CP
 - Recent phenomenological support: Negative Directed Flow in HIC Y.Nara, H.Niemi, AO, H.Stoecker, PRC94('16)034906.
 Y. Nara, H. Niemi, AO, J. Steinheimer, X.-F. Luo, H. Stoecker, EPJA 54 ('18)18
 - The phase transition density may be above NS central density *X.Wu, AO, H.Shen, PRC to appear (arXiv:1806.03760)*

Negative Directed Flow

Directed Flow $v_1 = \langle \cos \phi \rangle = \langle p_x / p_T \rangle$, Slope $= dv_1 / dy$

Negative Flow in Heavy-Ion Collisions

STAR Collab. (L. Adamczyk et al.), Phys.Rev.Lett. 112 ('14), 162301

Negative Directed Flow

■ Negative Directed Flow slope at $\sqrt{s_{NN}}$ = 11.5 GeV (STAR ('14)) → Strong softening of EOS is necessary at n > (5-10) n₀

Isospin & Hypercharge Sym. E in quark matter

■ Two types of vector int. in NJL → Isospin & Hypercharge Sym. E X.Wu, AO, H.Shen, PRC to appear (arXiv:1806.03760)

$$\mathcal{L}_v = -G_0(\bar{q}\gamma_\mu q)^2 - G_v \sum_i \left[(\bar{q}\gamma_\mu \lambda_i q)^2 + (\bar{q}i\gamma_5\gamma_\mu \lambda_i q)^2 \right]$$

 $E = \alpha^2 S(n) + \alpha_Y^2 S_Y(n) , \ \alpha = -2\langle T_z \rangle / B , \ \alpha_Y = \langle B + S \rangle / B$

A. Ohnishi @ GWPA:Genesis 2nd symp., Nov. 28, 2018 33

(ρ, T, Y_{e}) during SN, BH formation, BNSM

Summary

- Constraint on symmetry energy parameters (S_0, L, K_n, Q_n) together with 2 M $_{\odot}$ constraint gives the 1.4 M $_{\odot}$ neutron star radius in the range of (10.6-12.2) km.
 - Consistent with the constraint from GW.
 - Fermi momentum (k_F) expansion is invoked.
 Smooth extrapolation to 2 n₀ seems to work.
 - Let's wait for the NICER data and next NS-NS merger event.
- Onset density of hyperons may be sensitive to the symmetry energy in addition to potential parameters, (U_{0B}, L_B).
 - We need to know the slope of potential in addition to the depth.
- QCD phase transition with strong EOS softening is expected at n=(5-10)n₀ in almost sym. n.m. from heavy-ion data.
 - GW data from HMNS would clarify 3D phase diagram structure.

Thank you for your attention !

Reservations

- Only massless electrons are considered and Crust EOS is ignored.
 - With μ, chemical potential may be reduced a little.
- Non-relativistic kinetic energy is used.
 - With rel. K.E., E per nucleon is modified by 0.03 MeV @ 10 n₀ as long as Sat. and Sym. E parameters are fixed.
- **Function form is limited to** k_F **expansion with** $u^{k/3}$ **(**k=2-6**).**
 - R_{1.4} range becomes narrower with k=2-5.
 - Density expansion gives EOSs very sensitive to parametrs.
- Smooth E(u) (= No phase transition) is assumed.
 - We expect QCD phase transition at (5-10) n0 from recent BES data of directed flow *Nara, Niemi, AO, Stoecker ('16)*
 - Transition to quark matter may not soften EOS drastically.
- Causality is violated at high densities, $n > (4-6) n_0$.

To Do (or Prospect)

- **Baryons other than nucleons** Λ , Δ , Ξ , Σ , ...
- Connecting to Hadron Resonance Gas (HRG) EOS
 - HRG EOS mass and kinetic E of hadrons with M<2 GeV + simple potential E $\varepsilon_{\rm HRG} = T + cn^2$

or Lattice EOS in HIC(No saturation, No constraint from NS).

We need to guess the potential energy density more seriously for consistent understanding of HIC, Nuclear, and NS physics.

 $\varepsilon = \mathcal{T} + \mathcal{V}$ — Nuclear and NS physics

- Connecting to Quark(-Gluon) matter EOS
 - Embed model-H singularities E.g. Nonaka, Asakawa ('04)
 - "Interpolation" of nuclear and quark matter EOS

Further Constraint on Q_n

2 M_{\odot} requirement constrains Qn further.

$$Q_n > -9.3L + 480 \,\mathrm{MeV}$$
 300
 200
 100
 300
 100
 300
 100
 300
 100
 300
 100
 300
 100
 300
 100
 300
 100
 300
 300
 100
 300
 300
 300
 100
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 30

TLOK

FIG. 4. Constraint on Q_n

AO, Kolomeitsev, Lattimer, Tews, Wu (OKLTW), in prog.

Neutron star – Is it made of neutrons ?

- Possibilities of various constituents in neutron star core
 - Strange Hadrons

• Meson condensate (K, π)

- Quark matter
- Quark pair condensate (Color superconductor)

NS core = Densest stable matter existing in our universe.

(p, T) during SN & BH formation

Ishizuka, AO, Tsubakihara, Sumiyoshi, Yamada, JPG 35('08) 085201; AO et al., NPA 835('10) 374.

QCD phase diagram (Exp. & Theor. Studies)

QCD phase transition is not only an academic problem, but also a subject which would be measured in HIC or Compact Stars

A. Ohnishi @ GWPA:Genesis 2nd symp., Nov. 28, 2018 43

AO, PTPS 193('12)1

Unitary Gas Constraint

Tews, Lattimer, AO, Kolomeitsev (TLOK), ApJ ('17)

- Conjecture: Unitary gas gives the lower bound of neutron matter energy. $S(n) = E_{\text{PNM}} - E_{\text{SNM}} \ge E_{\text{UG}} - E_{\text{SNM}}$ Sym. Nucl. Matter EOS $E_{\text{UG}} = \xi E_{\text{FG}} \ (\xi \simeq 0.38)$ is relatively well known.
- a₀ = ∞ in unitary gas
 → lower bound energy of a₀ < 0 systems (w/o two-body b.s.) ?
- Supported by (most of) ab initio calc.

Potential Energy Density

Potential Energy Density in the Fermi momentum expansion

$$\mathcal{V} = nV = \sum_{i,j\in B} n_i n_j v_{ij}(n)$$

Density-dependent NN interactions vij (i, j=p or n) are known.

Single particle potential

$$U_{i} = \frac{\partial \mathcal{V}}{n_{i}} = \sum_{j} n_{j} v_{ij}(n) + \sum_{jk} n_{j} n_{k} \frac{\partial v_{jk}(n)}{\partial n_{i}}$$
$$= U_{0i} + \frac{L_{i}}{3}(u-1) + \mathcal{O}((u-1)^{2})$$
rearrangement
$$\simeq au + bu^{4/3}$$
term

Again, a and b are given as a linear function of U_{0i} and L_i .

