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First, I would like to thank the audience … 

Last talks
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Symmetry Energy Parameters & Neutron Star Radius

Nuclear Matter Symmetry Energy parameters (S0, L) are 
closely related to Neutron Star Properties, 
e.g. 

c.f. Workshop (Tue, 2WAA & 2WAB), this session, …

How can we constrain (S0, L) ?
→ Nuclear Exp't. & Theory, Astro. Obs., Unitary gas

Conjecture: UG gives the lower bound
of neutron matter energy.
Tews, Lattimer, AO, Kolomeitsev (TLOK), ApJ ('17)

→ For a given L, lower bound of S0 exists.

Sym. Nucl. Matter EOS 
is relatively well known.
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Constraint on (S
0
, L) from Lower Bound of PNM Energy

Unitary gas + 2 M☉ constraints rule out 5 EOSs out of 10
numerically tabulated and frequently used in astrophys. calc. 

TLOK
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Further Constraints on Higher-Order Sym. E. parameters

Kn and Qn are correlated with L in “Good” theoretical models.

TLOK
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Purpose & Contents

Quesion: 
What are the effects of these higher-order sym. E. parameters
on MR curve of NS ?

This work:
TLOK + 2 M☉ constraints + kF expansion → R1.4 

Contents

Introduction

Fermi momentum (kF) expansion of EOS

Neutron Star MR curve

(Limitations & Prospect)

Summary
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Fermi momentum (kF) expansion

Saturation & Symmetry Energy Parameters

Energy does not approach zero at n → 0.

Fermi momentum expansion (~ Skyrme type EDF)

Generated many-body force is given by 

u=n/n0
(ρ

0
, E/A(ρ

0
))

K

S
0

L/3

E PNM

SNM

Kin. E. Two-body Density-dep. pot.

m*

TLOK
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Expansion Coefficients

Coefficients (a,b,c,d) are represented by 
Saturation and Symmetry Energy Parameters

TLOK

Tedious but straightforward calc.
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TLOK+2M☉ constraints 

TLOK constraints

(S0, L) is in Pentagon.

(Kn, Qn) are from
TLOK constraint.

K0=(190-270) MeV

(n0,E0) is fixed
n0=0.164 fm-3, E0=-15.9 MeV (small uncertainties)

Q0 is taken to kill d0 parameter

(Coef. of u2. Sym. N. M. is not very stiff at high-density) 

2 M☉ constraint

EOS should support 2 M☉ neutron stars.

AO, Kolomeitsev, Lattimer, Tews, Wu (OKLTW), in prog.



10 A. Ohnishi @ Hawaii 2018, Oct. 27, 2018

TLOK+2M☉ constraints on EOS

2M☉ constraint narrows the range of EOS.

Consistent with FP and TT(Togashi-Takano) EOSs.

APR and GCR(Gandolfi-Carlson-Reddy) EOSs seems to have 
larger S0 values.

OKLTW, in prog.
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Neutron Star MR curve

TLOK + 2 M☉ constraints → R1.4=(10.6-12.2) km

E and P are linear fn. of Sat. & Sym. E. parameters
→ Min./Max. appears at the corners of pentagon (ABCDE).

For a given (S0, L),
unc. of R

1.4
 ~ 0.5 km

= unc. from higher-order
   parameters

Unc. from (S0, L) ~ 1.1 km
→ We still need to fix

(S0, L) more precisely.

OKLTW, in prog.
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Neutron Star MR curve

Our constraint is consistent with many of previous ones.

R1.4=(10.6-12.2) km Present work (TLOK + 2 M☉ )

LIGO-Virgo (Tidal deformability Λ from BNSM) 
(10.5-13.3) km Abbott+('18b)
(9.1-14.0) km De+('18) (Λ)

Theoretical Estimates
(10.7-13.1) km

Lattimer, Prakash('16) 
(10.0-13.6) km

Annala+('18) (χEFT+pQCD)
(10-13.6) km

Tews+('18)(χEFT+ cs)

(12.0-13.6) km
Fattoyev+('18) (PREX)

12.7 ± 0.4 km
 Margueron+('18) (n expansion)

Fattoyev+('18)

Margueron+('18)

OKLTW, in prog.

http://inspirehep.net/record/1411298
http://inspirehep.net/record/1636955
http://inspirehep.net/record/1618373
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OKLTW, in prog.

Neutron Chemical Potential in NS

Λ appears in neutron stars if EΛ (p=0) = MΛ+UΛ<  μn  

W. Weise's conjecture: UΛ in χEFT (2+3 body) is stiff enough.

But μn is larger with TLOK+2M☉ constraints

W. Weise, NFQCD2018 (2018.06); 
Gerstung, Kaiser, Weise, in prog. APR μn
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Neutron Chemical Potential in NS

Neutron Chemical Potential

Single particle potential

(LΛ<0 in most of RMF 
before 2010)

OKLTW, in prog.

LΛ=0, 50, 100 MeV

Sym. E. and LΛ determine
the emerging density of Λ. 

Sym. E. and LΛ determine
the emerging density of Λ. 
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Reservations

Only massless electrons are considered and Crust EOS is ignored.

With μ, chemical potential may be reduced a little.

Non-relativistic kinetic energy is used.

With rel. K.E., E per nucleon is modified by 0.03 MeV @ 10 n0 
as long as Sat. and Sym. E parameters are fixed.

Function form is limited to kF expansion with uk/3 (k=2-6).

R1.4 range becomes narrower with k=2-5.

Density expansion gives EOSs very sensitive to parametrs.

Smooth E(u) (= No phase transition) is assumed.

We expect QCD phase transition at (5-10) n0
from recent BES data of directed flow Nara, Niemi, AO, Stoecker ('16)

Transition to quark matter may not soften EOS drastically.

Causality is violated at high densities, n > (4-6) n0. 
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To Do (or Prospect)

Baryons other than nucleons Λ, Δ, Ξ, Σ, … 

Connecting to Hadron Resonance Gas (HRG) EOS

HRG EOS
mass and kinetic E of hadrons with M<2 GeV + simple potential E

or Lattice EOS in HIC(No saturation, No constraint from NS).

We need to guess the potential energy density more seriously
for consistent understanding of HIC, Nuclear, and NS physics.

Connecting to Quark(-Gluon) matter EOS

Embed model-H singularities E.g. Nonaka, Asakawa ('04) 

“Interpolation” of nuclear and quark matter EOS

Nuclear and NS physics
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Summary

Tews-Lattimer-AO-Kolomeitsev ('17) constraints (S0, L, Kn, Qn)
and 2 M☉ constraint with the aid of Fermi momentum (kF) 
expansion lead to the costraint on 1.4 M☉ neutron star radius of 
(10.6-12.2) km. 

Consistent with many of other constraint.

Appearance of hyperons and Deltas may be sensitive to the 
symmetry energy in addition to potential parameters, (U0B, LB).

We need to know the slope of potential in addition to the depth.

Global EOS (HIC and Nuclear/NS matter) needs to be given in a 
way where HIC physicists and NS physicists admit. 
E.g. “Hadron Resonance Gas (HRG)+Potential from NS” 

Thank you for your attention and for staying 
until the end of scientific program of the meeting.

Thank you for your attention and for staying 
until the end of scientific program of the meeting.
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Further Constraint on Qn

2 M☉ requirement constrains Qn further.

AO, Kolomeitsev, Lattimer, Tews, Wu (OKLTW), in prog.
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Unitary Gas Constraint

Conjecture:
Unitary gas gives the lower bound of neutron matter energy.

a0 = ∞  in unitary gas
→ lower bound energy

of a0 < 0 systems
(w/o two-body b.s.) ?

Supported by (most of) 
ab initio calc.

Tews, Lattimer, AO, Kolomeitsev (TLOK), ApJ ('17)

Sym. Nucl. Matter EOS 
is relatively well known.
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Potential Energy Density

Potential Energy Density in the Fermi momentum expansion

Density-dependent NN interactions vij (i, j=p or n) are known.

Single particle potential

Again, a and b are given as a linear function of U0i and Li.

rearrangement
term


	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20

