J-PARC-HI 提案書に関するコメント

京都大学基礎物理学研究所 大西 明

J-PARC-HI が拓く高密度物質とストレンジネスの物理 (2018/12/15)

J-PARC-HI の性能(提案書より)

$\sqrt{sNN}=(5-20)$ GeV: Golden Region to Study Dense Matter

(ρ, T, Y_{e}) during SN, BH formation, BNSM

3次元 QCD 相図

H.Ueda, T.Z.Nakano, AO, M.Ruggieri, K.Sumiyoshi, PRD88('13),074776

NuPECC, Long Range Plan 2017

HIC @ Einc=10-25 AGeV ($\sqrt{s_{NN}}$ =4.9-7.1 GeV) is a Quantum Simulater of

Direct Black Hole formation and Binary Neutron Star Mergers

(非対称度は異なりますが...)

Sec. 2 J-PARC-HI の物理(提案書より)

- 高密度物質の探索
 - 粒子フローによる超高密度物質の状態方程式の決定
 - ●保存量のゆらぎによるQCD 相構造の探索
 - (仮想)光子および重クォーク対による超高密度物質の内部状態の探索
 - 究極の超高密度物質の探索にむけて
- ハドロン・ストレンジネス核物理
 - ハイパー核とエキゾティック粒子の研究

● 粒子相関によるハドロン間力の測定

■ QCD の励起状態の測定

衝突エネルギー関数として非単調性が見えている (κσ², dv₁/dy)

集団フロ

- Directed flow (v₁, <p_x>), Elliptic flow (v₂)
 - → 衝突初期に作られ、高密度の状態方程式 (EOS) に敏感

負のフローとEOS の軟化

■ ビリアル定理を使って任意の EOS を取り込めるように理論を拡張
→ (s_{NN}= 11.5 GeV で見られる負のフロー (dv₁/dy<0)
→ (5-10)ρ₀ において急激な EOS の軟化があれば説明可能

QCD 一次相転移に伴うEOS の softening

HIC @ J-PARC-HI で「流体」は作られるか?

Dynamically Integrated Transport Approach

Akamatsu+('18)

「粒子相関によるハドロン間力の測定」 へのコメント

2 粒子相関関数 (Chaotic Source)

静的なガウス源 2 粒子相関関数 $q \cot \delta = -1/a_0 + r_{\text{eff}q^2/2 + \mathcal{O}(q^4)}$ Koonin ('77); Pratt+('90); Lednicky+('82) 15 2 $C(q) = \frac{E_1 E_2 dN_{12}/dp_1 dp_2}{(E_1 dN_1/dp_1)(E_2 dN_2/dp_2)}$ 10 C(q) $\simeq \int dr S_{12}(r) \left| \psi_{12}^{(-)}(r,q) \right|^2$ aR=0.2 $r_{eff}/R=0$ 0 2 n Source fn. int. \rightarrow rel. w.f. R/a₀ 3 q: 相対運動量 $R/a_0 = -1$ R/a₀=0.2 $R/a_0 = -0.2$ 2 ဗ် $\psi^{(-)}(\mathbf{p}_1,\mathbf{p}_2)$ r_{eff}/R=0 h, 0 0.5 1.5 2 0 aR 散乱長の大きさによって相関関数は大きく変化 16 **A.** UIIIISIII (W, J⁻1 AICC⁻111, 2010/12/13

ΛΛ 相関関数とΛΛ 相互作用

- H 粒子 (uuddss) は存在するか?
 - Jaffe の予言 ('77) : 深く束縛
 - Nagara イベントで否定 Takahashi+('01)
 - 共鳴状態? Yoon+('07); HAL QCD ('16)
- **■** AA 相関関数 → 弱い引力
 - 実験 Adamczyk+ (STAR) ('15)
 - 理論 Morita, Furumoto, AO ('15); AO+('16)

New Data from LHC-ALICE

Morita, Furumoto, AO ('15); AO+('16)

V. M. Sarti (ALICE), MESONS 2018 ALICE Collab., in prep.

Ω[−] p, K[−] p 相関

■ Ωp 相関 (dibaryon の存在を期待。 HAL QCD+Coulomb.)

A. Ohnishi @ J-PARC-HI, 2018/12/15

19

■ K⁻p 相関 (束縛状態 A(1405) をもつ。Chiral Unitary+Coulomb)

Ξ-p相関(EN 束縛状態としての H 粒子は?)

V. M. Sarti (ALICE Collab.), MESONS 2018

→ 一番やりたかった散乱が測れるかも 「ハイペロン-原子核散乱」

高いエネルギーでも d, α は比較的大きな確率で 生成される。 (e.g. d/p~1% @ RHIC) YNN 相互作用 ?

まとめ

- 理論的には √s_{NN}=4.9 GeV で mixed phase が現れていると考えるのが自然である。 J-PARC-HI では Onset of QGP が調べられると期待。
- J-PARC-HIでは軽い原子核も多く作られるはず。 高統計・高ストレンジ率を生かして、終状態相互作用による ハイペロン - 原子核散乱(ハイペロン - 原子核相関)の測定も 期待できる。

Trajectory in (µB,T) plane

Nara et al. ('18)

Thank you for your attention !

(*p*, *T*) during SN & BH formation

Ishizuka, AO, Tsubakihara, Sumiyoshi, Yamada, JPG 35('08) 085201; AO et al., NPA 835('10) 374.

