Constraint on higher order symmetry energy parameters and its relevance to neutron star properties

Akira Ohnishi (Yukawa Inst. for Theor. Phys., Kyoto U.)

in collaboraton with E. E. Kolomeitsev (Matej Bel U.), James M. Lattimer (Stony Brook), Ingo Tews (LANL), Xuhao Wu (Nankai U./YITP)

Int. workshop on "Hadron structure and interaction in dense matter" Nov. 11-12, 2018, Tokai, Japan

- I. Tews, J. M. Lattimer, AO, E.E.Kolomeitsev, ApJ 848('17) 105 [arXiv:1611.07133]
- AO, Kolomeitsev, Lattimer, Tews, X.Wu, in prog.

QCD Phase Diagram

QCD Phase Diagram

Symmetry Energy Parameters & Neutron Star Radius

- Nuclear Matter Symmetry Energy parameters (S₀, L) are closely related to Neutron Star Properties,
 e.g. R_{1.4} = R_{NS}(M = 1.4M_☉)
- **How can we constrain (S₀, L) ?**
 - → Nuclear Exp't. & Theory, Astro. Obs., Unitary gas
- Conjecture: UG gives the lower bound of neutron matter energy.

Tews, Lattimer, AO, Kolomeitsev (TLOK), ApJ ('17)

$$S(n) = E_{\text{PNM}} - E_{\text{SNM}} \ge E_{\text{UG}} - E_{\text{SNM}}$$

$$E_{\text{UG}} = \xi E_{\text{FG}} \ (\xi \simeq 0.38)$$

$$\text{Sym. Nucl. Matter EOS}$$
is relatively well known.

Constraint on (S_{o}, L) from Lower Bound of PNM Energy

■ Unitary gas + 2 M_{\odot} constraints rule out 5 EOSs out of 10 numerically tabulated and frequently used in astrophys. calc.

A. Ohnishi @ Tokai 2018, Nov. 12, 2018 5

Further Constraints on Higher-Order Sym. E. parameters

K_n and Q_n are correlated with L in "Good" theoretical models.

$$K_n = 3.534L - (74.02 \pm 21.17) \text{MeV}$$

 $Q_n = -7.313L + (354.03 \pm 133.16) \text{MeV}$

A. Ohnishi @ Tokai 2018, Nov. 12, 2018 6

Purpose & Contents

Quesion:

What are the effects of these higher-order sym. E. parameters on MR curve of NS ?

This work: TLOK + 2 M const

TLOK + 2 M_{\odot} constraints + k_F expansion $\rightarrow R_{1.4}$

- Contents
 - Introduction
 - Symmetry Energy Parameters, Nuclear Matter EOS, and Neutron Star Radius
 - Implications to quark-hadron physics in cold dense matter
 - Neutron chemical potential, QCD phase transition
 - Summary

Symmetry Energy Parameters, Nuclear Matter EOS, and Neutron Star Radius

Fermi momentum (k_F) expansion

Saturation & Symmetry Energy Parameters

 $E_{\rm NM}(u,\alpha) = E_{\rm SNM}(u) + \alpha^2 S(u)$ $E_{\rm SNM}(u) \simeq E_0 + \frac{K_0}{18}(u-1)^2 + \frac{Q_0}{162}(u-1)^3$ $S(u) \simeq S_0 + \frac{L}{3}(u-1) + \frac{K_s}{18}(u-1)^2 + \frac{Q_s}{162}(u-1)^3$ $(u = n/n_0, \alpha = (n_n - n_p)/n)$

TLOK

Energy does not approach zero at $n \rightarrow 0$.

- Fermi momentum expansion (~ Skyrme type EDF)
 - Generated many-body force is given by $k_F \propto u^{1/3} \longrightarrow \mathbf{m}^*$

$$E_{\text{SNM}}(u) \simeq T_0 u^{2/3} + a_0 u + b_0 u^{4/3} + c_0 u^{5/3} + d_0 u^2$$

$$S(u) \simeq T_s u^{2/3} + a_s u + b_s u^{4/3} + c_s u^{5/3} + d_s u^2$$

Kin. E. Two-body Density-dep. pot.

Expansion Coefficients

Coefficients (a,b,c,d) are represented by Saturation and Symmetry Energy Parameters			TLOK	
$a_0 = -4T_0$	$+20E_{0}$	$+ K_0$	$-Q_{0}/6$	
$b_0 = 6T_0$	$-45E_{0}$	$-5K_{0}/2$	$+Q_0/2$	
$c_0 = -4T_0$	$+36E_{0}$	$+2K_{0}$	$-Q_{0}/2$	
$d_0 = T_0$	$-10E_{0}$	$-K_{0}/2$	$+Q_{0}/6$	
$a_s = -4T_s$	$+20S_0 - 19L/3$	$+ K_s$	$-Q_s/6$	
$b_s = 6T_s$	$-45S_0 + 15L$	$-5K_s/2$	$+Q_s/2$	
$c_s = -4T_s$	$+36S_0 - 12L$	$+2K_s$	$-Q_s/2$	
$d_s = T_s$	$-10S_0 + 10L/3$	$-K_s/2$	$+Q_s/6$	
$\left(T_0 = \frac{3}{5} \frac{\hbar^2 k_F(n)}{2m}\right)$	$(\frac{n_0)^2}{2}, T_s = T_0(2^{1/3} - 1)$			

Tedious but straightforward calc.

TLOK+2 M_{\odot} constraints

- TLOK constraints
 - (S₀, L) is in Pentagon.
 - (K_n, Q_n) are from TLOK constraint.
 - K₀=(190-270) MeV
 - (n_0, E_0) is fixed $n_0=0.164 \text{ fm}-3, E_0=-15.9 \text{ MeV} (small uncertainties)$
 - Q₀ is taken to kill d₀ parameter
 (Coef. of u². Sym. N. M. is not very stiff at high-density)
- **2** M_{\odot} constraint
 - $\bullet\,$ EOS should support 2 M_\odot neutron stars.

AO, Kolomeitsev, Lattimer, Tews, Wu (OKLTW), in prog.

TLOK+2 M_{\odot} constraints on EOS

- **2** M_{\odot} constraint narrows the range of EOS.
- Consistent with FP and TT(Togashi-Takano) EOSs.
- APR and GCR(Gandolfi-Carlson-Reddy) EOSs seems to have larger S₀ values.

Neutron Star MR curve

- **TLOK + 2** M_{\odot} constraints $\rightarrow R_{1.4}$ =(10.6-12.2) km
- OKLTW, in prog.
- E and P are linear fn. of Sat. & Sym. E. parameters
 Min./Max. appears at the corners of pentagon (ABCDE).
- For a given (S₀, L), unc. of R_{1.4} ~ 0.5 km
 = unc. from higher-order parameters
- Unc. from (S₀, L) ~ 1.1 km
 → We still need to fix (S₀, L) more precisely.

Impact of GW from binary neutron star merger

- GW170817 from NS-NS → Multi messenger astrophysics (Kyutoku's talk)
- Neutron Star Radius
 - Inspiral region \rightarrow Tidal deformability (Λ) \rightarrow NS radius (e.g. R1.4)
- Neutron Star Maximum Mass
 - No GW signal from Hyper Massive NS → Mmax Mmax(T=0,ω=0) < Mmax(T=0,ω) < M < Mmax(T,ω)</p>
- Nucleosynthesis site of r-process nuclei
 - kilonova/macronova from decay energy of the synthesized elements
 - r-process nucleosynthesis seems to occur in BNSM !
- Central Engine of (Short) Gamma-Ray Bursts
- GW as standard siren (Hubble constant)

Courtesy of Y. Sekiguchi @ YKIS2018b

Various Constraints

12

R [km]

14

16

10

10

12

R [km]

(d)

PRC98 ('18)045804

16

14

(h)

A. Ohnishi @ Tokai 2018, Nov. 12, 2018 15

100 200 300 500 1000 2000 10 11 12 13 14 Lattimer, Prakash PRep. 621 ('16), 127

0.5

Neutron Star MR curve

- Our constraint is consistent with many of previous ones.
 - $R_{1.4} = (10.6-12.2) \text{ km Present work (TLOK + 2 M_{\odot})}$ OKLTW, in prog.
 - LIGO-Virgo (Tidal deformability Λ from BNSM) (10.5-13.3) km *Abbott+('18b)* (9.1-14.0) km *De+('18)* (Λ) Neutron Star Mass and Radius

Implications to quark-hadron physics in cold dense matter (1) Neutron Chemical Potential and Hyperon Puzzle

Neutron Chemical Potential in NS

- A appears in neutron stars if E_{Λ} (p=0) = $M_{\Lambda}+U_{\Lambda} < \mu_n$
- **W.** Weise's conjecture: U_{Λ} in χ EFT (2+3 body) is stiff enough.
- **But** μ_n is larger with TLOK+2M_{\odot} constraints

Neutron Chemical Potential in NS

Neutron Chemical Potential

$$\mu_n + M_N = \frac{\partial(nE)}{\partial n_n} = E + u\frac{\partial E}{\partial u} + 2\alpha(1-\alpha)S(u)$$

Single particle potential

Implications to quark-hadron physics in cold dense matter (2) QCD phase transition density and order in cold dense matter

QCD phase transition in cold dense matter

- Transition to quark matter in cold-dense matter 1st order or crossover ?
- Crossover: Masuda, Hatsuda, Takatsuka, Kojo, Baym, ...
- Ist order p.t.
 - Many effective models predict, e.g. Asakawa-Yazaki CP
 - Recent phenomenological support: Negative Directed Flow in HIC Y.Nara, H.Niemi, AO, H.Stoecker, PRC94('16)034906.
 Y. Nara, H. Niemi, AO, J. Steinheimer, X.-F. Luo, H. Stoecker, EPJA 54 ('18)18
 - The phase transition density may be above NS central density *X.Wu, AO, H.Shen, PRC to appear (arXiv:1806.03760)*

Negative Directed Flow

Directed Flow $v_1 = \langle \cos \phi \rangle = \langle p_x / p_T \rangle$, Slope $= dv_1 / dy$

• Negative Directed Flow slope at $\sqrt{s_{NN}} = 11.5$ GeV (STAR ('14))

 \rightarrow Strong softening of EOS is necessary at n > (5-10) n₀

Y.Nara, H.Niemi, AO, H.Stoecker, PRC94('16)034906.

Y. Nara, H. Niemi, AO, J. Steinheimer, X.-F. Luo, H. Stoecker EPJA 54 ('18)18

Isospin & Hypercharge Sym. E in quark matter

Two types of vector int. in NJL

X.Wu, AO, H.Shen, PRC to appear (arXiv:1806.03760)

$$\mathcal{L}_v = -G_0 (\bar{q}\gamma_\mu q)^2 - G_v \sum_i \left[(\bar{q}\gamma_\mu \lambda_i q)^2 + (\bar{q}i\gamma_5\gamma_\mu \lambda_i q)^2 \right]$$

Isospin & Hypercharge Sym. E $E = \alpha^2 S(n) + \alpha_Y^2 S_Y(n) , \ \alpha = -2\langle T_z \rangle / B , \ \alpha_Y = \langle B + S \rangle / B$

(ρ, T, Y_{e}) during SN, BH formation, BNSM

Reservations and Prospects

Reservations

- Only massless electrons are considered and Crust EOS is ignored.
 - With μ, chemical potential may be reduced a little.
- Non-relativistic kinetic energy is used.
 - With rel. K.E., E per nucleon is modified by 0.03 MeV @ 10 n₀ as long as Sat. and Sym. E parameters are fixed.
- **Function form is limited to** k_F **expansion with** $u^{k/3}$ **(**k**=2-6).**
 - R_{1.4} range becomes narrower with k=2-5.
 - Density expansion gives EOSs very sensitive to parametrs.
- Smooth E(u) (= No phase transition) is assumed.
 - We expect QCD phase transition at (5-10) n0 from recent BES data of directed flow *Nara, Niemi, AO, Stoecker ('16)*
 - Transition to quark matter may not soften EOS drastically.
- Causality is violated at high densities, $n > (4-6) n_0$.

To Do (or Prospect)

- **Baryons other than nucleons** Λ , Δ , Ξ , Σ , ...
- Connecting to Hadron Resonance Gas (HRG) EOS
 - HRG EOS mass and kinetic E of hadrons with M<2 GeV + simple potential E $\varepsilon_{\rm HRG} = T + cn^2$

or Lattice EOS in HIC(No saturation, No constraint from NS).

We need to guess the potential energy density more seriously for consistent understanding of HIC, Nuclear, and NS physics.

 $\varepsilon = \mathcal{T} + \mathcal{V}$ — Nuclear and NS physics

- Connecting to Quark(-Gluon) matter EOS
 - Embed model-H singularities E.g. Nonaka, Asakawa ('04)
 - Interpolation of nuclear and quark matter EOS

Summary

- Tews-Lattimer-AO-Kolomeitsev ('17) constraints (S0, L, K_n , Q_n) and 2 M_{\odot} constraint with the aid of Fermi momentum (k_F) expansion lead to the costraint on 1.4 M_{\odot} neutron star radius of (10.6-12.2) km.
 - Consistent with many of other constraint.
- Onset density of hyperons may be sensitive to the symmetry energy in addition to potential parameters, (U_{0B}, L_B).
 - We need to know the slope of potential in addition to the depth.
- Global EOS (HIC and Nuclear/NS matter) needs to be given in a way where HIC physicists and NS physicists admit. E.g. "Hadron Resonance Gas (HRG)+Potential from NS"

Thank you for your attention .

Further Constraint on Q_n

2 M_{\odot} requirement constrains Qn further.

$$Q_n > -9.3L + 480 \,\mathrm{MeV}$$

AO, Kolomeitsev, Lattimer, Tews, Wu (OKLTW), in prog.

Neutron star – Is it made of neutrons ?

- Possibilities of various constituents in neutron star core
 - Strange Hadrons

• Meson condensate (K, π)

- Quark matter
- Quark pair condensate (Color superconductor)

NS core = Densest stable matter existing in our universe.

(p, T) during SN & BH formation

Ishizuka, AO, Tsubakihara, Sumiyoshi, Yamada, JPG 35('08) 085201; AO et al., NPA 835('10) 374.

QCD phase diagram (Exp. & Theor. Studies)

QCD phase transition is not only an academic problem, but also a subject which would be measured in HIC or Compact Stars

AO, PTPS 193('12)1

Unitary Gas Constraint

Tews, Lattimer, AO, Kolomeitsev (TLOK), ApJ ('17)

- Conjecture: Unitary gas gives the lower bound of neutron matter energy. $S(n) = E_{\text{PNM}} - E_{\text{SNM}} \ge E_{\text{UG}} - E_{\text{SNM}}$ Sym. Nucl. Matter EOS $E_{\text{UG}} = \xi E_{\text{FG}} \ (\xi \simeq 0.38)$ is relatively well known.
- a₀ = ∞ in unitary gas
 → lower bound energy of a₀ < 0 systems (w/o two-body b.s.) ?
- Supported by (most of) ab initio calc.

Potential Energy Density

Potential Energy Density in the Fermi momentum expansion

$$\mathcal{V} = nV = \sum_{i,j\in B} n_i n_j v_{ij}(n)$$

Density-dependent NN interactions vij (i, j=p or n) are known.

Single particle potential

$$U_{i} = \frac{\partial \mathcal{V}}{n_{i}} = \sum_{j} n_{j} v_{ij}(n) + \sum_{jk} n_{j} n_{k} \frac{\partial v_{jk}(n)}{\partial n_{i}}$$
$$= U_{0i} + \frac{L_{i}}{3}(u-1) + \mathcal{O}((u-1)^{2})$$
rearrangement
$$\simeq au + bu^{4/3}$$
term

Again, a and b are given as a linear function of U_{0i} and L_i .

