Do androids dream of solving the sign problem ?

Akira Ohnishi (Nuclear theory group) *YITP Lunch Seminar, July 10, 2019*

Outline

- **Androids and Neural Network**
- **Sign Problem (Lefschetz thimble, Path Optimization)**
- **Do neural network help us to search for the path ?**
- **Summary**

Do androids dream of electric sheep ?

- **A novel by Philip K. Dick (1968), and the original of (inspiration for) the film, "Blade runner" (1982).**
- **Can androids (replicants) have emotion (humanity) ?**

(pic. from amazon)

Ridley Scott / Warner Bros (pict. from amazon)

A. Ohnishi @ YITP Lunch seminar, July 10, 2019 **2 /10**

Neural Network

- **A mathematical model of brain, and the engine of androids (AI) and machine learning.**
- **Combination of linear and non-linear transf.**

 $a_i = g(W_{ij}^{(1)}x_j + b_i^{(1)})$ variational $f_i = g(W_{i,j}^{(2)}a_j + b_i^{(2)})$ **parameters** $y_i = \alpha_i f_i + \beta_i$ $q(x) = \tanh x$ (activation fn.)

Network parameters are optimized by using teacher data (pattern recog.), by try and error (board games), or to minimize the cost function.

A. David Smith, J. P. Bolam, Trends in Neurosci. 13 ('90), 259

Sign problem

\blacksquare Numerical integration of oscillating function is difficult.

$$
\int dx \exp(-x^2) \cos(2ax) = \sqrt{\pi} \exp(-a^2)
$$

We need Monte-Carlo samples $\propto exp(a^2)$

Sign problem

Path integral with Complex Action S

$$
\langle \mathcal{O} \rangle = \frac{\int dx \; \mathcal{O}(x) e^{-S(x)}}{\int dx \; e^{-S(x)}} = \frac{\int dx \; \mathcal{O}(x) e^{i\theta} |e^{-S(x)}|}{\int dx \; e^{i\theta} |e^{-S(x)}|} = \frac{\langle \mathcal{O} e^{i\theta} \rangle_{\text{pq}}}{\langle e^{i\theta} \rangle_{\text{pq}}}
$$
\noscillation\n
$$
\langle \mathcal{O} \rangle_{\text{pq}} = \frac{\int dx \mathcal{O}(x) |e^{-S(x)}|}{\int dx |e^{-S(x)}|}, \quad \theta = -i \text{ Im} S
$$

We need exp(# V) MC configurations (Sign problem) We need exp(# V) MC configurations (Sign problem)

Sign problem appears in various quantum systems e.g. systems incl. fermions at finite μ

$$
\det D(\mu) = [\det D(-\mu^*)]^* \to \det D(\mu \neq 0, \in \mathcal{R}) \in \mathbb{C}
$$

Finite density QCD, Hubbard model off half-filling, Finite density fermion systems with repulsive int., ….

Miserable ? Miserable ?

A New Hope (a la SW Episode IV): Lefschetz thimbles

Lefschetz thimble method

Witten ('10), Cristoforetti+ (Aurora) ('12), Fujii+ ('13), Alexandru+ ('16).

Complexify integral variables

 $x \rightarrow z = x + iy$

Flow eq. from a fixed point σ (thimble) \rightarrow Im(S)=const.

Thimble https://muddyfaces.co.uk/

Path optimization method

Integral measure also has a phase.

$$
\mathcal{Z} = \int_{\mathcal{C}} dz e^{-S(z)} = \int dx J e^{-S(x+iy(x))}
$$

$$
= \int dx \left(1 + i \frac{dy}{dx}\right) \exp(-\text{Re}S - i\text{Im}S)
$$

Let us enhance the average phase factor by optimizing the path.

$$
\langle e^{i\theta} \rangle_{\text{pq}} = \frac{\int dx J[y(x)] e^{-S(x+iy(x))}}{\int dx |J[y(x)] e^{-S(x+iy(x))}} = \frac{\mathcal{Z}[y(x)]}{\mathcal{Z}_{\text{pq}}[y(x)]} \text{— path dep.}
$$

APF = $|\langle e^{i\theta} \rangle_{\text{pq}}|$

Sign problem with complexified variables ~ Optimization problem of integration path → Neural network may work ! Sign problem with complexified variables ~ Optimization problem of integration path → Neural network may work !

A. Ohnishi @ YITP Lunch seminar, July 10, 2019 **8 /10**

Do neural networks help us to search for the path ?

- **0+1 dimensional lattice QCD at finite density**
	- **Complexification of link variables** $U \in SU(3) \rightarrow \mathcal{U} = UH \in SL(3)$
	- **Hybrid Monte-Carlo Dynamical variable =** $U \in SU(3)$ **, Hamiltonian = Re(S)**
	- **Mono hidden layer neural network, Stochastic gradient method**

Summary

- **Sign problem can be regarded as an optimization problem of the integral path in complexified variable space.**
- **Neural networks help us to search good integral path (manifold) (when the real axis is a reasonable initial state).**
	- **Any fn. can be reproduced at (hidden layer unit #)** → ∞ **(Universal approximation theorem)** *G. Cybenko, MCSS 2 ('89) 303, K. Hornik, Neural networks 4('91) 251*
- **The sign problem is still difficult to solve in realistic systems.**
	- **Two or more thimbles having different signs contribute to the partition fn.**
		- **→ Tempered Lefschetz thimble ?** *Fukuma, Matsumoto, Umeda ('19)*
	- **Numerical cost of optimization with Jacobian effects** ∞ $O(V^3)$ **→ Sparse Jacobian matrix approximation** *Alexandru+('18), Bursa, Kroyter ('18)*
	- **Very complicated manifold → Deep learning ?**

Thank you !

Akira Ohnishi 1, Yuto Mori ² , Kouji Kashiwa ³

1. Yukawa Inst. for Theoretical Physics, Kyoto U., 2. Dept. Phys., Kyoto U., 3. Fukuoka Inst. Tech.

Y. Mori (PhD stu.) K. Kashiwa AO (11 yrs ago)

- *1D integral: Y. Mori, K. Kashiwa, AO, PRD 96 ('17), 111501(R) [arXiv:1705.05605]*
- *φ⁴ w/ NN*: *Y. Mori, K. Kashiwa, AO, PTEP 2018 ('18), 023B04 [arXiv:1709.03208]*
- *Lat 2017: AO, Y. Mori, K. Kashiwa, EPJ Web Conf. 175 ('18), 07043 [arXiv:1712.01088]*
- *NJL thimble: Y. Mori, K. Kashiwa, AO, PLB 781('18),698 [arXiv:1705.03646]*
- *PNJL w/ NN: K. Kashiwa, Y. Mori, AO, PRD 99 ('19), 014033 [arXiv:1805.08940 [hep-ph]*
- *PNJL with vector int. using NN: K. Kashiwa, Y. Mori, AO, arXiv:1903.03679 [hep-lat]*
- *0+1D QCD: Y. Mori, K. Kashiwa, AO, 1904.11140; AO, Y. Mori, K. Kashiwa, arXiv:1812.11506 (Lat2018 proc.)*

Deep Learning

Deep learning (# of hidden layers > 3) may be helpful to explore complex paths, which human beings (~ 7 layers) cannot imagine, while "Understanding" the results of machine learning need to be done by human beings (at present).

Defelipe 2011a (Review). The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5, 29.

Euler-Lagrange equation for the integral path

Maximizing APF = Minimizing phase quenched partition fn.

$$
\mathcal{Z}_{pq} = \int d^N \varphi_R \left[\det \left(\delta_{ij} + i \frac{\partial \varphi_{j,I}}{\partial \varphi_{i,R}} \right) \exp[-S(\varphi_R + i\varphi_I)] \right]
$$

$$
= \int d^N x \left[W(x_i + iy_i, \partial_i y_j) \right] (\varphi = x + iy(x))
$$

Stationary condition of Z_{pq} w.r.t. y(x) \rightarrow Euler-Lagrange eq.
 $\frac{\partial}{\partial u_i} \mathcal{Z}_{pq} = 0 \rightarrow \left[\frac{\partial}{\partial x_i} \frac{\partial}{\partial (\partial_i u_i)} - \frac{\partial}{\partial u_i} \right] |W(x + iy, \partial y)| = 0$

One variable Euler-Lagrange equation $\ddot{y} = (1 + \dot{y}^2)^2 \left[\frac{\partial (\text{Im} S)}{\partial x} + \frac{\dot{y}}{1 + \dot{y}^2} \frac{\partial (\text{Re} S)}{\partial x} \right]$ $(\dot{y} = dy/dx, \ddot{y} = d^2y/dx^2)$

Example of repulsive vector-type interaction

One-Site Hubbard model (strong coupling limit \rightarrow Hopping term=0)

$$
S = Un_{\uparrow} n_{\downarrow} - \mu(n_{\uparrow} + n_{\downarrow}) \quad (n_i = \psi_i^{\dagger} \psi_i)
$$

Path integral representation *Tanizaki, Hidaka, Hayata ('16)*

$$
\mathcal{Z} = \sqrt{\frac{\beta U}{2\pi}} \int d\varphi \left[1 + \exp(\beta U(i\varphi + \mu/U + 1/2)) \right]^2 \exp[-\beta U \varphi^2 / 2]
$$

Complex!

Cancellation among multi-thimbles, and # of thimbles increases with $β = 1/T$

Example of repulsive vector-type interaction

