

京都大学基礎物理学研究所 大西 明

京大核理論コロキウム Apr.24, 2019

核物質状態方程式

状態方程式 (EOS)

Based on Tews et al. ('17)

Contents

- Introduction
 - QCD 相図と状態方程式
- 重イオン衝突で探る高密度物質の相転移
 - クォーク・グルーオン・プラズマ生成の証拠
 - 1次 or 2次相転移は見えているか?
 - ハドロン輸送模型 & 統合輸送模型での分析
- 中性子星で探る高密度物質の状態方程式
 - コンパクト天体現象と状態方程式
 - 飽和点・対称エネルギーパラメータから状態方程式へ
 - 中性子星半径の制限
- 🛚 まとめ

輸送模型と高密度 QCD 相転移を中心に。

 漸近的自由性(大きなエネルギースケールでは結合定数 → 0)
 → 核物質(ハドロン物質)は、高温・高密度においては クォーク・グルーオンからなる物質になるはず (QCD 相転移)

QCD 相転移温度の簡単な評価

Massless Free Gas (Stefan-Boltzmann 則)

$$P = \frac{\pi^2}{90} T^4 \left(\sum_B g_B + \frac{7}{8} \sum_F g_F \right)$$

- Hadron gas ~ massless free pion gas $P_H = \frac{\pi^2}{90}T^4 \times 3$

$$\begin{array}{c} P \\ P_{QGP} \\ P_{H} \\ T^{4} \end{array}$$

- Quark Gluon Plasma (QGP)
 ~ (massless free) quarks and gluons + vacuum $P_{\text{QGP}} = \frac{\pi^2}{90}T^4 \left(2 \times (N_c^2 1) + \frac{7}{8} \times 4 \times N_c \times N_f \right) B$ $= \frac{\pi^2}{90}T^4 \times 37 B$
- QCD 相転移

$$P_H = P_{\text{QGP}} \to T_c = \left[\frac{90}{34\pi^2}\right]^{1/4} B^{1/4} \simeq 0.72B^{1/4} \simeq 158 \text{MeV}$$

クォーク・グルーオン・プラズマの発見 (1)

- 量子色力学 (QCD) に基づく第一原理計算
 =格子 QCD シミュレーション
- 図: T⁴ で規格化したエネルギー密度と圧力
- T = 150-200 MeV 程度で 急激なエネルギー密度の変化
- 圧力はやや滑らかに 増加していく
 - → QGP への相転移 Tc = 154 ± 9 MeV

A. Bazavov et al. [HotQCD], PRD90('14)094503. S. Borsanyi et al., PLB 730 ('14) 99.

How do heavy-ion collisions look like ?

Au+Au, 10.6 A GeV

Pb+Pb, 158 A GeV

 $\sqrt{s_{NN}} \sim 5 \text{ GeV}$

 $\sqrt{s_{_{\rm NN}}} \sim 20 \text{ GeV}$

JAMming on the Web http://www.jcprg.org/jow/

クォーク・グルーオン・プラズマの発見 (2)

- QGP 中でのジェットのエネルギー損失
 - 真空中ではパートン(クォーク、グルーオン)が
 激しく散乱 + ハドロン化 → 強い方位角 180 度相関
 - QGP が作られると色電荷の分布によりパートンが エネルギーを失う→後方での方位角相関の消失
 - RHIC での実験で d+Au ではそのまま、 Au+Au 衝突では後方相関が消失

Chiral Transition at Finite µ

- 格子 QCD 計算
 - 符号問題のため、有限密度での精密計算は困難
- 有効模型 (E.g. Nambu-Jona-Lasinio (NJL) 模型)
 - 低温では1次相転移の可能性あり → QCD 臨界点
 - 低温での相転移次数・臨界点の位置には大きな模型依存性

クォーク・グルーオン・プラズマは RHIC とLHC で(多分)見つかった。

しかし低密度での転移はクロスオーバー (真の相転移ではない) 1次、あるいは2次のQCD 相転移は 人類は見つけられるのか?

QCD 一次相転移は見えたか?

衝突エネルギー関数として非単調性が見えている (κσ², dv₁/dy)

集団フロ

- Directed flow (v₁, <p_x>), Elliptic flow (v₂)
 - → 衝突初期に作られ、高密度の状態方程式 (EOS) に敏感

ハドロン輸送模型 JAM

Y.Nara, N.Otuka, AO, K.Niita, S.Chiba, PRC61('00), 024901 M.Isse, AO, N.Otuka, P.K.Sahu, Y.Nara, PRC72 ('05)064908

- Event Generator: Jet AA Microscopic transport model (JAM)
 - 多くの自由度・素過程を取り入れた輸送模型
 - 平均場を導入して E_{inc}=(1-158) AGeV でのフローをほぼ説明
 - 。しかし $\sqrt{s_{NN}}$ =11.5 GeV での負のフローは説明できない

TDHF and Vlasov Equation

Time-Dependent Mean Field Theory (e.g., TDHF)

$$i\hbar\frac{\partial\phi_i}{\partial t} = h\phi_i$$

Density Matrix

$$\rho(\mathbf{r},\mathbf{r}') = \sum_{i}^{Occ} \phi_i(\mathbf{r}) \phi_i^*(\mathbf{r}') \quad \rightarrow \rho_W = f \text{ (phase space dist.)}$$

TDHF for Density Matrix

$$i\hbar \frac{\partial \rho}{\partial t} = [h, \rho] \qquad \rightarrow \frac{\partial f}{\partial t} = \{h_W, f\} + \mathcal{O}(\hbar^2)$$

Wigner Transformation and Wigner-Kirkwood Expansion (Ref.: Ring-Schuck)

$$A_W(r,p) = \int d^3s \exp(-ip \cdot s/\hbar) \langle r+s/2 \mid A \mid r-s/2 \rangle$$

$$(AB)_W = A_W \exp(i\hbar\Lambda) B_W , \quad \Lambda = \nabla'_r \cdot \nabla_p - \nabla'_p \cdot \nabla_r$$

$$(\nabla' \text{ acts on the left})$$

$$[A,B]_W = 2iA_W \sin(\hbar\Lambda/2) B_W = i\hbar \{A_W, B_W\}_{\rm PB} + \mathcal{O}(\hbar^3)$$

Test Particle Method

Vlasov Equation

$$\frac{\partial f}{\partial t} - \{h_W, f\}_{\rm PB} = \frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla}_r f - \boldsymbol{\nabla} U \cdot \boldsymbol{\nabla}_p f = 0$$

Classical Hamiltonian

$$h_W(\boldsymbol{r}, \boldsymbol{p}) = \frac{\boldsymbol{p}^2}{2m} + U(\boldsymbol{r}, \boldsymbol{p})$$

Test Particle Method (C. Y. Wong, 1982)

$$f(\boldsymbol{r},\boldsymbol{p}) = \frac{1}{N_0} \sum_{i}^{AN_0} \delta(\boldsymbol{r} - \boldsymbol{r}_i) \delta(\boldsymbol{p} - \boldsymbol{p}_i) \rightarrow \frac{d\boldsymbol{r}_i}{dt} = \boldsymbol{\nabla}_p h_W , \quad \frac{d\boldsymbol{p}_i}{dt} = -\boldsymbol{\nabla}_r h_W$$

Mean Field Evolution can be simulated by Classical Test Particles → Opened a possibility to Simulate High Energy HIC including Two-Body Collisions in Cascade

BUU (Boltzmann-Uehling-Uhlenbeck) Equation

BUU Equation (Bertsch and Das Gupta, Phys. Rept. 160(88), 190)

$$\begin{aligned} \frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla}_r f - \boldsymbol{\nabla} U \cdot \boldsymbol{\nabla}_p f &= I_{\text{coll}}[f] \\ I_{\text{coll}}[f] &= -\frac{1}{2} \int \frac{d^3 p_2 d\Omega}{(2\pi\hbar)^3} v_{12} \frac{d\sigma}{d\Omega} \\ &\times [ff_2(1-f_3)(1-f_4) - f_3 f_4(1-f)(1-f_2)] \end{aligned}$$

- Incorporated Physics in BUU
 - Mean Field Evolution
 - Incoherent) Two-Body Collisions
 - Pauli Blocking in Two-Body Collisions

One-Body Observables (Particle Spectra, Collective Flow, ..)
 X Event-by-Event Fluctuation (Fragment, Intermittency, ...)

Comarison of TDHF, Vlasov and BUU(VUU)

Ca+Ca, 40 A MeV (Cassing-Metag-Mosel-Niita, Phys. Rep. 188 (1990) 363).

SPS(NA49) vs RHIC(STAR)

負のフローとEOS の軟化

■ ビリアル定理を使って任意の EOS を取り込めるように理論を拡張
 → (s_{NN}= 11.5 GeV で見られる負のフロー (dv₁/dy<0)
 → (5-10)ρ₀ において急激な EOS の軟化あれば説明可能

Virial

$$G = \sum_{i} \mathbf{p}_{i} \cdot \mathbf{r}_{i}$$

$$\rightarrow \frac{dG}{dt} = \sum_{i} \mathbf{p}_{i} \cdot \mathbf{v}_{i} - \sum_{i} \nabla_{i} U \cdot \mathbf{r}_{i} + \frac{1}{\Delta t} \sum_{\text{collision}} \mathbf{q}_{i} \cdot (\mathbf{r}_{i} - \mathbf{r}_{j}) = 3VP$$
Kinetic Potential Pressure from Collisions

- Attractive / Repulsive Orbit Scatterings
 - 通常は散乱角はランダム → 衝突項の圧力への影響はゼロ
 - Attractive orbits $\rightarrow \Delta P < 0$ (softening)
 - Repulsive orbits $\rightarrow \Delta P > 0$ (hardening)

Boltzmann Eq. simulating a given EOS

 $P > P(\varepsilon) \rightarrow Attractive orbit, P > P(\varepsilon) \rightarrow Repulsive orbit$ 衝突が十分に頻繁であれば、ボルツマン方程式だけでポテンシャル効果をシミュレートできる! (5-10)ρ₀でQCD 相転移がありそう。 軟化が必要なことから(対称核物質では) 1次相転移が想定される!

- 統合輸送模型
 - ◎ 粒子の集合からスタート。
 - 高エネルギー密度領域で生成された粒子は流体を作るが、 leading particle は粒子のまま扱い、衝突を繰り返す。
 - 粒子比は実験データをよく再現。フローは

Y. Akamatsu, M. Asakawa, T. Hirano, M. Kitazawa, K. Morita, K. Murase, Y. Nara, C. Nonaka, AO, PRC 98 ('18), 024909

粒子·流体の統合模型: To do list

- 粒子と流体の時間発展を同時に解き、その遷移も記述 → Good!
- 遷移以外の粒子・流体の相互作用無視!
 - 流体中の粒子の運動(圧力勾配の影響、エネルギー損失)
- 使われている状態方程式は「核物質」状態方程式としては不十分
 - EOS-Q: 1st order p.t. at ε~0.5 GeV/fm³. 飽和性なし(斥力のみ)。

対称エネルギーと中性子星半径を中心に。

GW170817

B. P. Abbott et al. (LIGO and Virgo) PRL 119, 161101 (2017)

- 質量和 $M = 2.74^{+0.04}$ M_{\odot}
- それぞれの質量 1.17-1.60 M_☉
 → 連星中性子星合体 (Binary Neutron Star Merger)
- Gamma Ray Burst (GRB170717A) が 1.7 s 後に起こる。
 - → GRB の起源(の一つ)を特定

- inspiral (徐々に近づいていく段階)における振動数変化を観測
 → 中性子星半径を制限
- 放出された物質の速度から中性子星の最大質量を制限 M. Shibata et al., 1710.07579

 $M_{max} = (2.15-2.25) M_{\odot} (c.f. ハイペロンパズル)$

■ r- 過程元素生成の示唆

重力波から中性子星半径へ

- Inspiral phase での重力波 → 潮汐変形により位相が進む
 Tidal deformability $Q_{ij} = -\lambda E_{ij}$, $\lambda = \frac{\Lambda}{G} (GM/c^2)^5$
 - 大きな半径 (硬い EOS) \rightarrow 変形しやすい \rightarrow 大きな Λ
 - ・中性子星半径は対称エネルギーパラメータ(S₀,L)に大きく依存
 → 高次のパラメータの影響は?

(R-A) E.Annala+, PRL120('18)172703

FIG. 2. The Λ values for stars with $M = 1.4 M_{\odot}$ as functions of the corresponding radius. The color coding follows Fig. 1, while the orange dashed line $\Lambda = 2.88 \times 10^{-6} (R/\text{km})^{7.5}$ has been included just to guide the eye.

(ρ, T, Y_{ρ}) during SN, BH formation, BNSM

- 中性子星の内側は見えないのに、 どうやって組成がわかるのですか? → 質量や半径からある程度推測できます。
- 静水圧平衡 小さな箱を考えて、 外の圧力 + 重力 = 内の圧力 $\frac{dP}{dr} = -G \frac{M \varepsilon/c^2}{r^2}$
- Tolman-Oppenheimer-Volkoff 方程式 (一般相対論補正を含む静水圧平衡)

$$\frac{dP}{dr} = -G \frac{(\varepsilon/c^2 + P/c^2)(M + 4\pi r^3 P/c^2)}{r^2(1 - 2GM/rc^2)}$$
$$\frac{dM}{dr} = 4\pi r^2 \varepsilon/c^2, \ P = P(\varepsilon) \ (EOS)$$

ε(r): エネルギー密度

P(r): 圧力

- ・状態方程式が与えられると質量と半径の関係(MR曲線)が 一意的に求まる。
 - → 中性子星の MR 曲線は相互作用模型を判別する

A→∞ における核子あたりのエネルギー (クーロンエネルギーは無視)

- 密度と非対称度の関数と考えると、 核子あたりのエネルギーが最小となる密度が実現する $E = E(\rho_B, \delta)$ 状態方程式 (EOS)
 - → 核物質の飽和性

■ 飽和点

$$(\rho_0, E_0) \simeq (0.16 \text{ fm}^{-3}, -16 \text{ MeV})$$

対称エネルギ・

■ 非対称核物質 (N ≠ Z) のエネルギー

 $E(\rho_{\rm B},\delta) = E(\rho_{\rm B},\delta=0) + S(\rho_{\rm B})\delta^2 \qquad P = \rho^2 \partial E/\partial \rho$

対称エネルギー S(ρ_B) = E(中性子物質)- E(対称核物質)

Unitary Gas Constraint on Symmetry Energy Parameters

- 対称エネルギー
 - 様々な実験データを用いた絞り込み
 (例:不安定核衝突からのπ生成比、SπRIT 実験、Ikeno+('16))
 - 「ユニタリーガスが中性子物質エネルギーの下限を与える」との conjecture から対称エネルギーパラメータ(S₀,L)を制限
 - I. Tews, J.M.Lattimer, AO, E.E.Kolomeitsev (TLOK), ApJ 848 ('17)105

Lattimer, Lim ('13), Lattimer, Steiner ('14) Tews, Lattimer, AO, Kolomeitsev ('16)

対称エネルギーパラメータから状態方程式へ

■ 対称エネルギー(中性子物質と対称核物質のエネルギー差)

● 飽和点 & 対称エネルギーパラメータ

 $E_{\rm NM}(u,\alpha) = E_{\rm SNM}(u) + \alpha^2 S(u)$ $E_{\rm SNM}(u) \simeq E_0 + \frac{K_0}{18}(u-1)^2 + \frac{Q_0}{162}(u-1)^3$ $S(u) \simeq S_0 + \frac{L}{3}(u-1) + \frac{K_s}{18}(u-1)^2 + \frac{Q_s}{162}(u-1)^3$ $(u = n/n_0, \alpha = (n_n - n_p)/n)$

高次対称エネルギーパラメータ

高次のパラメータ(2次、3次)はL(1次)と強い相関を持つ
 K_n =3.534L - (74.02 ± 21.17)MeV

 $Q_n = -7.313L + (354.03 \pm 133.16) \text{MeV}$

I. Tews, J.M.Lattimer, AO, E.E.Kolomeitsev (TLOK), ApJ 848 ('17)105

Expansion Coefficients

Coefficients (a,b,c,d) are represented by Saturation and Symmetry Energy Parameters			TLOK
$a_0 = -4T_0$	$+20E_{0}$	$+ K_0$	$-Q_{0}/6$
$b_0 = 6T_0$	$-45E_{0}$	$-5K_{0}/2$	$+Q_{0}/2$
$c_0 = -4T_0$	$+36E_{0}$	$+2K_{0}$	$-Q_0/2$
$d_0 = T_0$	$-10E_{0}$	$-K_{0}/2$	$+Q_{0}/6$
$a_s = -4T_s$	$+20S_0 - 19L/3$	$+ K_s$	$-Q_s/6$
$b_s = 6T_s$	$-45S_0 + 15L$	$-5K_s/2$	$+Q_s/2$
$c_s = -4T_s$	$+36S_0 - 12L$	$+2K_s$	$-Q_s/2$
$d_s = T_s$	$-10S_0 + 10L/3$	$-K_s/2$	$+Q_s/6$
$\left(T_0 = \frac{3}{5} \frac{\hbar^2 k_F(1)}{2m}\right)$	$\frac{n_0)^2}{n}, T_s = T_0(2^{1/3} - 1)$	())	

Tedious but straightforward calc.

中性子星物質 EOS

- 核物質 → 中性子星物質
 - 中性子・陽子・電子からなる電気的中性物質
 - 電気的中性条件から $\rho_e = \rho_p$

 $E_{nsm}(u) = E_{snm}(u) + \delta^2 S(u) + \frac{3}{8}\hbar (3\pi^2 \rho_0 u/2)^{1/3} (1-\delta)^{4/3}$ $(u = \rho/\rho_0, \quad \delta = (N-Z)/A)$

■ 陽子・中性子の質量差、電子質量を無視すると、 非対称度δは解析的に求まる。

 $Y_p(u) = (1 - \delta(u))/2 = \left[(A(u) + 1)^{1/3} - (A(u) - 1)^{1/3} \right]^3 / 4$ $A(u) = \sqrt{1 + \pi^2 \hbar^3 \rho_0 u / 288S^3(u)}$

- 3次方程式の解き方(カルダノの公式)
 - **変数を定数だけずらして 2 次の項を消す。** $x^3 + px + q = 0$
 - 因数分解の公式

 $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$ $= (x + y + z)(x + \omega y + \omega^{2}z)(x + \omega^{2}y + \omega z) \quad (\omega = (-1 + \sqrt{3}i)/2)$

を用いると、 $y^3 + z^3 = q$, 3yz = -pを満たす (y, z) を使って3次方程式が解ける。

TLOK+2 M_{\odot} constraints

- TLOK 条件
 - (S₀, L) は5角形内
 - (K_n, Q_n) を TLOK の
 制限に従って選ぶ
 - K₀=(190-270) MeV
 - (n₀,E₀) は固定
 n₀=0.164 fm-3, E₀=-15.9 MeV (よく決まっている)
 - Q₀ は対称核物質の密度 2 次項が消えるように選ぶ (u² 項があると対称核物質は硬くなりすぎる)
- 2 M_☉ 条件
 - EOS は 2M_☉ 中性子星をささえるべし

AO, Kolomeitsev, Lattimer, Tews, Wu (OKLTW), in prog.

TLOK+2M。条件に基づく状態方程式

- 2M_☉ 条件を加えることで EOS の下限があがる
- 変分計算 (Friedman-Pandharipande, Togashi-Takano) と無矛盾
- APR, GCR 状態方程式はS₀が5角形の外

→ 第一原理計算の選別へ(?)

Neutron Star MR curve

■ TLOK + 2 M_☉ 条件 → $R_{1.4}$ =(10.6-12.2) km

OKLTW, in prog.

- 他の多くの結果と consistent
 - LIGO-Virgo (Tidal deformability Λ from BNSM) (10.5-13.3) km *Abbott+('18b)* (9.1-14.0) km *De+('18)* (Λ)
 2.5
 - Theoretical Estimates

 (10.7-13.1) km
 Lattimer+, PRep.621('16)127

(10.0-13.6) km Annala+,PRL120('18)172703

(9-13.6) km *Tews+, PRC98 ('18)045804*

(12.0-13.6) km *F.J.Fattoyev+(PREX), PRL120 ('18)172702*

> Parity violating obs. Large error bar

Time dependence of Neutron Star Radius ($R_{1.4}$)

A. Ohnishi @ NT Colloq, Apr. 24, 2019 45

原子核の情報 (+2 M_{\odot}) から直接的に表した 中性子星物質状態方程式は 重力波からの半径制限と無矛盾。 (2-3) ρ_{\circ} までは滑らかな外挿が成り立っているようである。

ただし、こうした EOS は高温領域 (e.g. 重イオン衝突) で確かめられていない。

Isospin & Hypercharge Sym. E in quark matter

■ Two types of vector int. in NJL → Isospin & Hypercharge Sym. E X.Wu, AO, H.Shen, PRC to appear (arXiv:1806.03760)

$$\mathcal{L}_v = -G_0(\bar{q}\gamma_\mu q)^2 - G_v \sum_i \left[(\bar{q}\gamma_\mu \lambda_i q)^2 + (\bar{q}i\gamma_5\gamma_\mu \lambda_i q)^2 \right]$$

 $E = \alpha^2 S(n) + \alpha_Y^2 S_Y(n) , \ \alpha = -2\langle T_z \rangle / B , \ \alpha_Y = \langle B + S \rangle / B$

まとめ

- 高密度核物質の理解が大きく進みつつある
 - 重イオン衝突 (√s_{NN}=(5-20) GeV 領域) において QCD 相転移が起こっている可能性
 - 原子核物理学における対称エネルギーの決定とともに、
 中性子星半径の観測値制限が進んでいる
- なお重イオン・中性子星の一貫した理解へ!
 - EOS
 格子 QCD 状態方程式 @ p=0, T > 100 MeV
 + ハドロン共鳴ガス模型 @ p ~ 0, T < Tc
 + 飽和性・対称エネルギー・中性子星から情報 @ T ~ 0, p =(2-5)p₀
 + 臨界点近辺の特異性
 + ハドロン・クォーク物質状態方程式の接続
 - + ハトロノ・クオーク初員へ感力を式の後 道具はほぼそろっている(?)
 - 統合模型の精緻化、高密度 EOS の精緻化も必要

Thank you for your attention !

クォーク・グルーオン・プラズマの発見 (3)

- 高運動量ハドロンの抑制
 - 高いエネルギーのパートンの抑制
 → 高いエネルギーのハドロンの抑制
 - 本当に抑制されているか?
 - R_{AA} = 「実際の生成量」 ÷「素過程の重ね合わせ」
 - RHIC での観測 小さな原子核の衝突 (d+Au)
 → R_{AA} ~ 1
 大きな原子核の衝突 (Au+Au)
 → R_{AA} < 1

PHENIX White Paper

クォーク・グルーオン・プラズマの発見 (4)

- 流体模型(完全流体)の成功
 - 入射エネルギーの増加 + クォーク・グルーオンの解放
 → 粒子密度の増加 → 平均自由行程の減少
 → 流体模型の適用可能性大
 - RHIC での楕円フローデータは完全流体模型で見事に説明可能

集団フローから状態方程式へ

対称エネルギー

・k_Fⁿ (n=2,3,4,5,6) で展開

Y TP - V

・2,3次の係数(Ksym, Qsym)が
 Lと相関(模型からの推定)

Based on Tews et al. ('17)