Hadron-hadron correlation functions and its relation to exotic hadron search Akira Ohnishi (YITP, Kyoto U.) ALICE Week, 9 - 13 November, 2020 (Online)

- Introduction
- Survey of measured correlation function data
 - ΛΛ, pΩ⁻, pK⁻, pΞ⁻.
- Implications of current correlation function data to the existence of hadronic molecule states
 - Source size dependence of the correlation funciton
- Correlation functions in the near future
 - $\Lambda \Xi^-$, Λpp , D^+p , D^-p , ...
- Summary

Correlation Function (CF): Standard and Non-Std usage

Correlation function

 Correlation from the quantum statistics and the final state int. under indep. particle production assumption lead KP formula,

Koonin('77), Pratt+('86), Lednicky+('82)

$$C(\boldsymbol{p}_1, \boldsymbol{p}_2) = \frac{N_{12}(\boldsymbol{p}_1, \boldsymbol{p}_2)}{N_1(\boldsymbol{p}_1)N_2(\boldsymbol{p}_2)} \simeq \int \substack{\text{source fn. relative w.f.}}{d\boldsymbol{r}S_{12}(\boldsymbol{r})|\varphi_{\boldsymbol{q}}(\boldsymbol{r})|^2}$$

- Standard: Source size from CF (HBT-GGLP effects) Hanbury Brown & Twiss ('56); Goldhaber, Goldhaber, Lee, Pais ('60)
 - CF of free identical scalar bosons from spherical Gaussian source

$$\phi(\mathbf{r}) = \sqrt{2}\cos\mathbf{q} \cdot \mathbf{r} \to C(q) = 1 + \exp(-4R^2q^2)$$

- Non-standard: hadron-hadron interaction from CF
 - CF of non-identical pair from Gaussian source *R. Lednicky, V. L. Lyuboshits ('82); K. Morita, T. Furumoto, AO ('15)* $C(q) = 1 + \int dr S(r) \left\{ |\varphi_0(r)|^2 - |j_0(qr)|^2 \right\} \quad (\varphi_0 = \text{s-wave w.f.})$

CF shows how much $|\varphi|^2$ is enhanced $\rightarrow V_{hh}$ effects !

 p_1

 p_2

Fermtoscopic Study of Hadron-Hadron Interaction

If CF is measured and source is well known, we may fit low E. scattering parameters to data by using Lednicky-Lyboshits (LL) formula.

$$C_{LL}(q) = 1 + \frac{|f(q)|^2}{2R^2} F_3\left(\frac{r_{\text{eff}}}{R}\right) + \frac{2\text{Re}f(q)}{\sqrt{\pi}R}F_1(x) + \frac{2\text{Im}f(q)}{R}F_2(x)$$

non-identical pair, $f(q) = (e^{2i\delta_0} - 1)/2iq$ (scatt. ampl.), x = 2qR, (F_i = known functions)

- Asymptotic w.f. is assumed.
- If reliable V(r) or f(q) exists, we may fit the source size and other parameters to data, then we can examine V(r) or f(q).
 - J. Haidenbauer ('19): CF from f(q)
 - Our approach: CF from V(r)

Modern Hadron-Hadron Interactions

Lattice QCD *hh* potential

 V_{hh} is obtained from the Schrödinger eq. for the Nambu-Bethe-Salpeter (NBS) amplitude.

N. Ishii, S. Aoki, T. Hatsuda, PRL99('07)022001.

 $\rightarrow \Omega\Omega$, N Ω , AA-N Ξ potentials at phys. quark mass are published

Chiral EFT / Chiral SU(3) dynamics

- V_{hh} at low E. can be expanded systematically in powers of Q/A. S. Weinberg ('79); R. Machleidt, F. Sammarruca ('16) 2N Force 3N Force Y. Ikeda, T. Hyodo, W. Weise ('12). $IO_{(Q/\Lambda_X)^0}$ X = 0 $\rightarrow NN, NY, YY, \overline{KN} - \pi\Sigma - \pi\Lambda, ...$
- Quark cluster models, Meson exchange models, More phenomenological models, ...

YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

Let us examine modern hh interactions !

4

A. Connishi, ALICE week, Nov. 10, 2020

I will show some of the correlation functions which I investigated. Details will be discussed by B. Hohlweger.

AA correlation and AA interaction

AA correlation and AA interaction

$p\Omega^-$ correlation

pK⁻ correlation

$p\Xi^{-}$ correlation

Fermtoscopic Study of Hadron-Hadron Interaction

- **What did we learn from CF data of** $\Lambda\Lambda$, p Ω^- , pK⁻ and p Ξ^- ?
 - CF(ΛΛ) constrain (a₀, r_{eff}) region implying small |a₀|. It is likely that a₀<0 (in nucl. phys. convention, δ ~ -a₀q). (Consistent with double Λ hypernuclear data.)
 - CF(pΩ⁻) show strong enhancement at small q, imply large |a₀|, and examine the recent lattice NΩ potential. (First info. on NΩ)
 - CF(pK⁻) show enhancement at small q, and examine potentials from the Jülich model and chiral SU(3) dynamics. Coupled-channel effects with K⁰n and πΣ are large and visible, respectively (as discussed later).
 - CF(pΞ⁻) show strong enhancement at small q, imply large |a₀|, and examine the chiral EFT and recent lattice NΞ potentials. (Nijmegen NΞ potential seems to be inconsistent with data.) Coupled-channel effects with ΛΛ are not large (as discussed later). (Consistent with Ξ-hypernuclear data ?)

Fermtoscopic Study of Hadron-Hadron Interaction

- These recent (2015-2020) observations of correlation functions are great achievements of RHIC and LHC.
 We (theoretical physicists) appreciate your efforts.
 (I hope that ALICE publishes the new data more slowly...)
- Many hadron physicists loves peaks, E and Γ of discrete poles, rather than smooth spectra. (Pc from LHCb is a good example !) How can we (CF lovers) satisfy and attract them ?
 - Relation of CF with the existence of the bound state pole.
 - Do coupled-channel effects modify CF and/or generate additional poles ?
- They also love hadronic states including heavy quarks. Does silicon vertex detector specifies decay point of chamed hadrons ?
- Many neutron star matter EOS physicists love the three-body force including hyperons. Can we access the three-body force ?

Implications from current correlation function data to the existence of hadronic molecule states

Trend in Hadron Physics

- Hadron-Hadron interaction is closely related with ...
 - Quark-gluon structure of hadrons (Multi-quark or Hadronic molecule) *To be bound or not to be*, *That is the problem*.
 - Hadrons with heavy-quarks
 - Hadrons in nuclear matter and EOS of nuclear matter

- High-Energy Nuclear Collisions (\ssacksimilssimplessimp
 - $dN/dy \sim 1000$ (RHIC, Au+Au) $\rightarrow 10^3$ -10⁵ hadrons in one event
 - Various hadrons, nuclei (A<= 4) and anti-nuclei are formed.</p>
 - Yield ~ Stat. Model calc.
 (Formation processes are too complicated to be out of statistical.)

Source Size Dependence of Correlation Function

LL model: R. Lednicky, V. L. Lyuboshits ('82)

Wave function around threshold (S-wave, attraction)

Low energy w.f. and phase shift

 $u(r) = qr\chi_q(r) \to \sin(qr + \delta(q)) \sim \sin(q(r - a_0))$ $q \cot \delta = -\frac{1}{a_0} + \frac{1}{2}r_{\text{eff}}q^2 + \mathcal{O}(q^4) \ (\delta \sim -a_0q)$

- Wave function grows rapidly at small r with attraction.
- With a bound state $(a_0 > 0)$, a node appears around $r=a_0$

From correlation function to hadron-hadron interaction

- Large |a₀| (|a₀| > R)
 → Large C(q)
 (unitary regime)
- w/o bound state $(a_0 < 0, |a_0| \sim R)$ $\rightarrow C(q) > 1$
- With bound state (a₀ >0, |a₀| ~ R)
 - \rightarrow Region with C(q) < 1 appears

Source size dep. of CF \rightarrow Existence of bound state

Correlation Function with Gaussian source

NΩ potential (J=2, HAL QCD, a₀=3.4 fm) + Coulomb

$STAR + ALICE = N\Omega$ Dibaryon

Other bound states ?

1.1

\checkmark $\Lambda\Lambda$ -N Ξ

- $C_{\Lambda\Lambda}(q)$ in AA(RHIC) and pp(LHC) are similar (No b.s. below $\Lambda\Lambda$).
- LQCD predicts a virtural pole near N Ξ threshold, which can be detected as the cusp in $C_{\Lambda\Lambda}(q)$.

NLO(600) potential predicts the same. (The fate of H particle) K. Sasaki+[HAL QCD], NPA998('20)121737;

Y. Kamiya+, in prep.; Haidenbauer('19).

KN

- $\Lambda(1405)$ is believed to be the bound state of KN, and "dip" is expected at $R \sim a_0$.
- However, Coulomb and coupled-channel effects modify the dip-like behavior. Kamiya+ ('20).

Source Size Dependence of C(pK⁻)

- Coupled-channel effects are suppressed when R is large, and "pure" pK⁻ wave function may be observed in HIC.
- Can we deduce (Re a₀, Im a₀) at precision comparable to that in SIDDHARTA kaonic hydrogen data ?

Y. Kamiya, T. Hyodo, K. Morita, AO, W. Weise, PRL124('20)132501.

Correlation functions in the near future

CF from ALICE in the near future

- S=-3 baryon-baryon correlation (e.g. $\Lambda \Xi^{-}$)
 - Important to confirm N Ω bound state as a peak in $C_{\Lambda\Xi}(q)$.
 - Statistically challenging.
 In C_{AA} data from STAR, statistical fluc. is 10 times larger than expected signal from statistical model estimate.
- Three-body correlation (e.g. Λpp)
 - Extremely important to neutron star matter EOS, if we can extract three-body force.
 - We may need to develop a framework beyond the "Riverside approximation" to include *hh* and *hhh* interaction.
 E. O. Alt, T. Csorgo, B. Lorstad, J. Schmidt-Sorensen, PLB458 ('99)407 for 3π.

(I got the info. mainly from Laura, Valentina and Oton, but I never told it to people other than CF collaborators of mine.)

CF from ALICE in the near future (cont.)

- **Hadron-deuteron correlation** (Λd , K⁻d, Ξ^-d , Ω^-d , ...)
 - Scattering length data of these are important to evaluate binding energy and lifetime of hyper triton (Λd), I=1 KN interaction (K⁻d), and the existence of a bound state. *Etminan+ (2006.12771); J. Haidenbauer, PRC102('20)034001.*
 - For serious estimate, deuteron breakup effects (d ↔ pn) need to be accounted for. I asked two low-energy few-body nuclear physicists (K. Ogata, T. Fukui) to apply the few-body reaction framework (Continuum-discretized coupled-channels (CDCC)) to hadron-deuteron correlation.

(I got the info. mainly from Laura, Valentina and Oton, but I never told it to people other than CF collaborators of mine.)

CDCC

CF from ALICE in the near future (cont.)

- CF including charmed hadron
 - Extremely important in recent hadron physics.
 - D⁺(cd)-p(uud) correlation qq can annihilate, and D⁺p couples with many other channels. (LQCD calc. is difficult.)
 - $D^{-}(cd)$ -p(uud) correlation Probes $\Theta_{c}(c-ud-ud)$ state (replace \bar{s} in $\Theta(\bar{s}-ud-ud)$ with \bar{c}) Two pion exchange can induce attraction. Provides production-mechanism-free (thermal) result. Easy to calculate the potential in LQCD. D. O. Riska, N. N. Scoccola, PLB299('93)338 (pred.); A. Aktaset+ [H1], PLB588('04)17 (positive); J. M. Linket+ [FOCUS], PLB622('05)229 (negative).

(I got the info. mainly from Laura, Valentina and Oton, but I never told it to people other than CF collaborators of mine.)

 \mathbf{D}^+

p

Summary

- Correlation functions (CFs) can be utilized to constrain / examine the hadron-hadron interactions (V_h), provided that
 - the pair purity (λ) is not very small,
 - and V_{hh} dominates the correlation.
- Recent data from ALICE and STAR enable us to access V_{hh} unexplored in previous works.
- Source size (R) dependence of CF is important to get knowledge of the existence of a bound state around the threshold.
 - With a bound state, CF shows suppression at qR~1 for a₀/R ~ 1 in single-channel problems.
 - Coupled-channel effects are suppressed for larger R.
- CFs involving charmed hadrons are charming and would attract many hadron physicists.

Thank you for attention !

Coauthors of arXiv:1908.05414 (p Ω , $\Omega\Omega$) and arXiv:1911.01041 (pK⁻)

K. Morita S. Gongyo T. Hatsuda T. Hyodo

Y. Kamiya

K.Sasaki

ALICE

(My) Homeworks

- PΛ, pΣ⁰ and ΛΞ⁻ correlation functions using the updated LQCD potentials.
- **CF** involving deuteron (K. Ogata, T. Fukui).
- Developing a framework to handle three-body correlations.
- Interactions between hadrons with charm.
- Simple Gaussian source function should be improved to include resonance decay effects as done in CATS. (c.f. B. Hohlweger's talk)

Correlation Function (CF): Non-standard usage

- HBT, GGLP: CF + w.f. → Source Size Another way: CF + Source Size → w.f. → hh interaction
- Effect of hadron-hadron interaction on the wave function
 - Assumption: Only s-wave (L=0) is modified.
 - Non-identical particle pair, Gauss source.

$$\begin{split} \varphi_{\boldsymbol{q}}(\boldsymbol{r}) = & e^{i\boldsymbol{q}\cdot\boldsymbol{r}} - j_0(qr) + \chi_q(r) \\ \rightarrow C(\boldsymbol{q}) = \int d\boldsymbol{r} S(r) |\varphi_{\boldsymbol{q}}(\boldsymbol{r})|^2 \\ = & 1 + \int d\boldsymbol{r} S(r) \left\{ |\chi_q(r)|^2 - |j_0(qr)|^2 \right\} \end{split}$$

K. Morita, T. Furumoto, AO, PRC91('15)024916

Corr. Fn. shows how much squared w. f. is enhanced \rightarrow Large CF is expected with attraction

Lednicky-Lyuboshits (LL) model

Lednicky-Lyuboshits analytic model

• Asymp. w.f. + Eff. range corr. +
$$\psi^{(-)} = [\psi^{(+)}]^*$$

 $\psi_0(r) \rightarrow \psi_{asy}(r) = \frac{e^{-i\delta}}{qr} \sin(qr+\delta) = S^{-1} \left[\frac{\sin qr}{qr} + f(q) \frac{e^{iqr}}{r} \right]$

$$\Delta C_{\rm LL}(q) = \int d\mathbf{r} S_{12}(r) \left(|\psi_{\rm asy}(r)|^2 - |j_0(qr)|^2 \right)$$
$$= \frac{|f(q)|^2}{2R^2} F_3\left(\frac{r_{\rm eff}}{R}\right) + \frac{2\text{Re}f(q)}{\sqrt{\pi}R} F_1(x) - \frac{\text{Im}f(q)}{R} F_2(x)$$

 $(x = 2qR, R = \text{Gaussian size}, F_1, F_2, F_3 : \text{Known functions})$ Phase shifts

$$q \cot \delta = -\frac{1}{a_0} + \frac{1}{2}r_{\text{eff}}q^2 + \mathcal{O}(q^4) \rightarrow \delta \simeq -a_0q + O(q^3)$$
$$\sin(qr+\delta) \simeq \sin(q(r-a_0) + \cdots) \qquad \begin{array}{l} \text{Node at } \mathbf{r} \sim \mathbf{a}_0\\ \mathbf{for \ small \ q} \end{array}$$

C(q) in the low momentum limit

• Correlation function at small q (and $r_{eff}=0$) \rightarrow $F_1=1$, $F_2=0$, $F_3=1$

$$\Delta C_{\rm LL}(q) \rightarrow \frac{|f(0)|^2}{2R^2} + \frac{2\text{Re}f(0)}{\sqrt{\pi}R} \quad (q \rightarrow 0)$$

$$f(q) = (q \cot \delta - iq)^{-1} \simeq \left(-\frac{1}{a_0} + \frac{1}{2}r_{\rm eff}q^2 - iq\right)^{-1} \rightarrow -a_0$$

$$C_{\rm LL}(q \rightarrow 0) = 1 + \frac{a_0^2}{2R^2} - \frac{2a_0}{\sqrt{\pi}R} = 1 - \frac{2}{\pi} + \frac{1}{2}\left(\frac{a_0}{R} - \frac{2}{\sqrt{\pi}}\right)^2$$

$$1 - 2/\pi \simeq 0.36, \quad \sqrt{\pi}/2 \simeq 0.89$$

 $C(q \rightarrow 0)$ takes a minimum of 0.36 at R/a₀ = 0.89 in the LL model.

K⁻ p interaction

K⁻ p correlation function data

K – p correlation function from high-multiplicity events of pp collisions

S. Acharya et al. (ALICE), PRL124('20)092301 [1905.13470]

 High precision data from low to high momentum ! c.f. Previous scatt. data & Kaonic atom data.

[fm]

(d

X

 $m f(K^{-})$

250

1.5

0.5

1340

1360

 Enhanced at low k, cusp, Λ(1520), ...

200

Red:Kyoto model Blue: Julich model grey: Coulomb

SIDDHARTA

1440

YURAWA INSTITUTE FOR THEORETICAL PHYSICS

100

150

250

200

150

100

50

0 └ 50

 $K^{-}p$ [mb]

*a*_

 $\sigma(K)$

$\overline{K}N-\pi\Sigma-\pi\Lambda$ Scattering Amplitude and Potential

- Amplitude in chiral SU(3) coupled-channels dynamics Y. Ikeda, T. Hyodo, W. Weise, NPA881 ('12) 98
 - NLO meson-baryon effective Lagrangian (KN-πΣ-πΛ)
 + fit of Kaonic Hydrogen, Cross Section, Threshold branching ratio
- Coupled-channels potential

K. Miyahara, T. Hyodo, W. Weise, PRC98('18)025201

Potential fitted to IHW amplitude

Y. Ikeda, T. Hyodo, W. Weise, NPA881 ('12) 98 K. Miyahara, T. Hyodo, W. Weise, PRC98('18)025201

Correlation Function with Coupled-Channels Effects

J. Haidenbauer, NPA 981('19)1; R. Lednicky, V. V. Lyuboshits, V. L. Lyuboshits, Phys. At. Nucl. 61('98)2950.

with Coul.

Single channel, w/o Coulomb (non-identical pair)

$$C(\boldsymbol{q}) = 1 + \int d\boldsymbol{r} S(\boldsymbol{r}) \left[|\chi^{(-)}(r,q)|^2 - |j_0(qr)|^2 \right]$$

Single channel, w/ Coulomb

$$C(\boldsymbol{q}) = \int d\boldsymbol{r} S(\boldsymbol{r}) \left[|\varphi^{C,\text{full}}(\boldsymbol{q},\boldsymbol{r})|^2 + |\chi^{C,(-)}(\boldsymbol{r},\boldsymbol{q})|^2 - |j_0^C(\boldsymbol{q}\boldsymbol{r})|^2 \right]$$

Full free s-wave w.f. s-wave Coulomb w.f. with Coul.

Coupled channel, w/ Coulomb

$$\begin{split} C_i(\boldsymbol{q}) &= \int d\boldsymbol{r} S_i(\boldsymbol{r}) \left[|\varphi^{C,\text{full}}(\boldsymbol{q},\boldsymbol{r})|^2 + |\chi_i^{C,(-)}(r,q)|^2 - |j_0^C(qr)|^2 \right] \\ &+ \sum_{j \neq i} \omega_j \int d\boldsymbol{r} S_j(\boldsymbol{r}) |\chi_j^{C,(-)}(r,q)|^2 \quad \begin{array}{ll} \text{s-wave w.f.} \\ \text{in j-th channel} \\ \text{Outgoing B.C. in the i-th channel, } \omega_i &= \begin{array}{ll} \text{Source weight } (\omega_i = 1) \end{array} \end{split}$$

Coul. w.f.

Correlation Function with Coupled-Channels Effects

Correlation Function from Chiral SU(3) Potential (1)

- Corr. Fn. from Chiral SU(3) coupled-channels potential + Coulomb + threshold difference (for the first time !)
 Y. Kamiya, T. Hyodo, K. Morita, AO, W. Weise, PRL124('20)132501 [1911.01041].
- Coupled-channels effect
 - W.f. of other channels than K⁻ p decay in r < 1 fm.</p>
 - But they contribute to corr. fn. meaningfully.

Correlation Function from Chiral SU(3) Potential (2)

- - + Normalization + Pair purity (λ) \leftarrow Exp.
 - Larger $R \rightarrow$ Smaller couple-channels effect from $\pi\Sigma$ (Favorable values of R and ω_i are correlated)
 - Simple statistical model esitmate $\omega_{\pi\Sigma} \sim \exp[(m_{K}+m_{N}-m_{\pi}-m_{\Sigma})/T] \sim 2.$

Comparison with other estimates

40 A.Ohnishi, ALICE week, Nov. 10, 2020

300

Source Size Dependence (2)

- Experimental confirmation of coupled-channels contribution → Source size dependence
 - Channel w.f. other than K⁻ p are localized at around r=0.
 (Outgoing boundary condition for K⁻ p)
 - Contribution of $\pi\Sigma$ source is suppressed for larger R.

Source Size Dependence (2)

Corr. Fn. from pA & AA collisions will elucidate the role of $\pi\Sigma$

• $R \sim 1.6 \text{ fm} \rightarrow \pi \Sigma$ effects are suppressed.

