Hadron-hadron correlation functions and its relation to exotic hadron search **Akira Ohnishi (YITP, Kyoto U.)** *ALICE Week, 9 - 13 November, 2020 (Online)*

- **Introduction**
- **Survey of measured correlation function data**
	- $\Lambda\Lambda$, $p\Omega$ ⁻, pK ⁻, pE ⁻.
- Implications of current correlation function data **to the existence of hadronic molecule states**
	- Source size dependence of the correlation funciton
- **Correlation functions in the near future**
	- *Λ***Ξ^{***-***} ,** *Λ***pp, D^{***+***}p, D^{***-***}p, ...**
- **Summary**

Correlation Function (CF): Standard and Non-Std usage

Correlation function

Correlation from the quantum statistics and the final state int. under indep. particle production assumption lead KP formula,

Koonin('77), Pratt+('86), Lednicky+('82) **source fn. relative w.f.**

$$
C(\boldsymbol{p}_1, \boldsymbol{p}_2) = \frac{N_{12}(\boldsymbol{p}_1, \boldsymbol{p}_2)}{N_1(\boldsymbol{p}_1)N_2(\boldsymbol{p}_2)} \simeq \int d\boldsymbol{r} S_{12}(\boldsymbol{r}) |\varphi_{\boldsymbol{q}}(\boldsymbol{r})|^2
$$

- **Standard: Source size from CF (HBT-GGLP effects)** *Hanbury Brown & Twiss ('56); Goldhaber, Goldhaber, Lee, Pais ('60)*
	- **CF of free identical scalar bosons from spherical Gaussian source**

$$
\phi(\boldsymbol{r}) = \sqrt{2}\cos\boldsymbol{q}\cdot\boldsymbol{r} \rightarrow C(q) = 1 + \exp(-4R^2q^2)
$$

- Non-standard: hadron-hadron interaction from CF
	- **CF** of non-identical pair from Gaussian source *R. Lednicky, V. L. Lyuboshits ('82); K. Morita, T. Furumoto, AO ('15)* $C(\boldsymbol{q}) = 1 + \int d\boldsymbol{r} S(r) \left\{ |\varphi_0(r)|^2 - |j_0(qr)|^2 \right\}$ ($\varphi_0 =$ s-wave w.f.)

 CF *shows how much* $|\varphi|^2$ *is enhanced* $\rightarrow V$ _{*hh} effects !*</sub>

 \boldsymbol{p}_1

 \boldsymbol{p}_2

Fermtoscopic Study of Hadron-Hadron Interaction

If CF is measured and source is well known, we may fit low E. scattering parameters to data **by using Lednicky-Lyboshits (LL) formula.**

$$
C_{LL}(q) = 1 + \frac{|f(q)|^2}{2R^2} F_3\left(\frac{r_{\text{eff}}}{R}\right) + \frac{2\text{Re}f(q)}{\sqrt{\pi}R} F_1(x) + \frac{2\text{Im}f(q)}{R} F_2(x)
$$

non-identical pair, $f(q) = (e^{2i\delta_0} - 1)/2iq$ (scatt. ampl.), $x = 2qR$, $(F_i =$ known functions)

- **Asymptotic w.f. is assumed.**
- \blacksquare If reliable $V(r)$ or $f(q)$ exists, **we may fit the source size** and other parameters to data, **then we can examine** $V(r)$ or $f(q)$.
	- \bullet J. Haidenbauer ('19): CF from $f(q)$
	- **Our apΩpΩroach: CF from** *V***(***r***)**

Modern Hadron-Hadron Interactions

■ Lattice QCD *hh* potential

Vhh **is obtained from the Schrödinger eq. for the Nambu-Bethe-Salpeter (NBS)** amplitude.

N. Ishii, S. Aoki, T. Hatsuda, PRL99('07)022001.

 $\rightarrow \Omega\Omega$, N Ω , $\Lambda\Lambda$ -N Ξ potentials at phys. quark mass are published

Chiral EFT / Chiral SU(3) dynamics

- V_{hh} at low E. can be expanded systematically in powers of Q/ Λ . *S. Weinberg ('79);R. Machleidt, F. Sammarruca ('16);* 2N Force **3N Force** *Y. Ikeda, T. Hyodo, W. Weise ('12).* LO. X I---I $(Q/\Lambda_v)^0$ \rightarrow NN, NY, YY, KN- $\pi\Sigma$ - $\pi\Lambda$, ...
- \blacksquare Quark cluster models, **Meson exchange models,** More phenomenological models, ...

THEORETICAL PHYSICS

孞

Let us examine modern hh interactions !

A.Ohnishi, ALICE week, Nov. 10, 2020 **4**

NLO $(Q/\Lambda_v)^2$

NNLO $(Q/\Lambda_v)^3$

I will show some of the correlation functions which I investigated. Details will be discussed by B. Hohlweger.

ΛΛ correlation and ΛΛ interaction

ΛΛ correlation and ΛΛ interaction

pΩ– correlation

pK– correlation

A.Ohnishi, ALICE week, Nov. 10, 2020 **9**

pΞ– correlation

Fermtoscopic Study of Hadron-Hadron Interaction

- **What did we learn from CF data of** $\Lambda\Lambda$ **, pΩ⁻, pK⁻ and pΞ⁻?**
	- **CF(** $\Lambda\Lambda$ **) constrain (a₀, r_{eff}) region implying small** $|a_0|$ **.** It is likely that $a_0 < 0$ (in nucl. phys. convention, $\delta \sim -a_0 q$). **(Consistent with double Λ hypernuclear data.)**
	- **CF(pΩ⁻) show strong enhancement at small q, imply large** $|a_0|$ **,** and examine the recent lattice $N\Omega$ potential. (First info. on $N\Omega$)
	- **CF(pK⁻) show enhancement at small q, and examine potentials from the Jülich model and chiral SU(3) dynamics.** Coupled-channel effects with K^0 n and $\pi \Sigma$ are large and visible, respectively (as discussed later).
	- **CF(pΞ⁻) show strong enhancement at small q, imply large** $|\mathbf{a_0}|$ **,** and examine the chiral EFT and recent lattice NE potentials. **(Nijmegen NE potential seems to be inconsistent with data.)** Coupled-channel effects with $ΛΛ$ are not large (as discussed later). **(Consistent with Ξ-hypernuclear data ?)**

Fermtoscopic Study of Hadron-Hadron Interaction

- These recent (2015-2020) observations of correlation functions **are great achievements of RHIC and LHC.** We (theoretical physicists) appreciate your efforts. **(I hope that ALICE publishes the new data more slowly...)**
- **Many hadron physicists loves peaks, E and** Γ **of discrete poles,** rather than smooth spectra. (Pc from LHCb is a good example !) **How can we (CF lovers) satisfy and attract them ?**
	- **Relation of CF with the existence of the bound state pole.**
	- Do coupled-channel effects modify CF and/or generate additional poles ?
- **They also love hadronic states including heavy quarks. Does silicon vertex detector specifies decay point of chamed hadrons ?**
- **Many neutron star matter EOS physicists love the three-body force including hyperons. Can we access the three-body force ?**

Implications from Implications from current correlation function data current correlation function data to the existence of to the existence of hadronic molecule states hadronic molecule states

Trend in Hadron Physics

- **Hadron-Hadron interaction is closely related with ...**
	- **Quark-gluon structure of hadrons (Multi-quark or Hadronic molecule)** *To be bound or not to be, That is the problem.*
	- **Hadrons with heavy-quarks**
	- **Hadrons in nuclear matter and EOS of nuclear matter**

- **High-Energy Nuclear Collisions (** $\sqrt{s_{NN}}$ **=40 GeV 14 TeV) are favorable as a Hadron Factory !**
	- $dN/dy \sim 1000$ (RHIC, $Au + Au$) $\rightarrow 10^{3}$ -10⁵ hadrons in one event
	- **Various hadrons, nuclei (A<= 4) and anti-nuclei are formed.**
	- **Yield ~ Stat. Model calc. (Formation processes are too complicated to be out of statistical.)**

Source Size Dependence of Correlation Function

LL model: R. Lednicky, V. L. Lyuboshits ('82)

Wave function around threshold (S-wave, attraction)

■ Low energy w.f. and phase shift

 $u(r) = qr\chi_q(r) \rightarrow \sin(qr + \delta(q)) \sim \sin(q(r - a_0))$ $q\cot\delta=-\frac{1}{a_0}+\frac{1}{2}r_{\text{eff}}q^2+\mathcal{O}(q^4)\,\left(\delta\sim-a_0q\right)$

$$
a_0 = scatt. length
$$

$$
r_{eff} = eff. range
$$

- Wave function grows rapidly at small r with attraction.
- With a bound state $(a_0>0)$, a node appears around r= a_0

From correlation function to hadron-hadron interaction

- **Large** $|a_0|$ ($|a_0| > R$) \rightarrow Large C(q) **(unitary regime)**
- **w/o bound state** $(a_0 < 0, |a_0| \sim R)$ \rightarrow C(q) > 1
- **With bound state** $(a_0 > 0, |a_0| \sim R)$
	- **→ Region with** $C(q)$ < 1 appears

A.Ohnishi, ALICE week, Nov. 10, 2020 **17**

Source size dep. of CF → Existence of bound state Source size dep. of CF

Correlation Function with Gaussian source

NΩ potential (J=2, HAL QCD, a_0 =3.4 fm) + Coulomb

STAR + ALICE = NΩ Dibaryon

Other bound states ?

ΔΛ-ΝΞ

- \bullet $C_{\Lambda\Lambda}(q)$ in AA(RHIC) and pp(LHC) **are similar (No b.s. below ΛΛ).**
- **LQCD predicts a virtural pole near NΞ threshold, which can be detected as the cusp in** $C_{\Lambda\Lambda}(q)$ **.**

NLO(600) potential predicts the same. **(The fate of H particle)** *K. Sasaki+[HAL QCD], NPA998('20)121737;*

Y. Kamiya+, in prep.; Haidenbauer('19).

 $\overline{\mathbf{K}}$ N

- **Λ(1405) is believed to be the bound state of KN, and "dip" is expected at** $R \sim a_0$ **.**
- **However, Coulomb and coupled-channel** effects modify the dip-like behavior. *Kamiya+ ('20).*

Source Size Dependence of C(pK–)

- Coupled-channel effects are suppressed when R is large, and "pure" pK⁻ wave function may be observed in HIC.
- **Can we deduce (Re a₀, Im a₀) at precision comparable to that in SIDDHARTA kaonic hydrogen data ?**

Y. Kamiya, T. Hyodo, K. Morita, AO, W. Weise, PRL124('20)132501.

Correlation functions in the near future Correlation functions in the near future

CF from ALICE in the near future

 1.0

- **S=-3 baryon-baryon correlation (e.g. ΛΞ–)**
	- **Important to confirm NΩ bound state as a peak in** $C_{\Lambda}(\mathbf{q})$ **.**
	- **Statistically challenging.** In C_{ΛΛ} data from STAR, statistical fluc. is 10 times larger than expected **signal from statistical model estimate.**
- **Three-body correlation (e.g. Λpp)**
	- **Extremely important to neutron star matter EOS, if we can extract three-body force.**
	- We may need to develop a framework beyond the "Riverside" **approximation"** to include *hh* and *hhh* interaction. *E. O. Alt, T. Csorgo, B. Lorstad, J. Schmidt-Sorensen, PLB458 ('99)407 for 3π***.**

(I got the info. mainly from Laura, Valentina and Oton, but I never told it to people other than CF collaborators of mine.)

Expected H signal

CF from ALICE in the near future (cont.)

- **Hadron-deuteron correlation (Λd, K–d, Ξ–d, Ω–d, …)**
	- **Scattering length data of these are important to evaluate binding energy and lifetime of hyper triton (Λd), I=1 KN interaction (K–d), and the existence of a bound state.** *Etminan+ (2006.12771); J. Haidenbauer, PRC102('20)034001.*
	- **For serious estimate, deuteron breakup effects (d ↔ pn) need to be accounted for. I asked two low-energy** \bm{h} few-body nuclear physicists **(K. Ogata, T. Fukui) to apply** $S_{hpn}(r,r_{pn})$ **the few-body reaction framework (Continuum-discretized** coupled-channels (CDCC)) \overline{pn} **to hadron-deuteron correlation.**

(I got the info. mainly from Laura, Valentina and Oton, but I never told it to people other than CF collaborators of mine.)

CDCC

CF from ALICE in the near future (cont.)

- **CF including charmed hadron**
	- **Extremely important in recent hadron physics.**
	- **D**⁺(cd)-p(uud) correlation **qq can annihilate, and D⁺p couples with many other channels. (LQCD calc. is difficult.)**
	- **D**^{$-$}(cd)-p(uud) correlation **Probes Θ c (c-ud-ud) state (repΩlace s in Θ(s-ud-ud) with c)** Two pion exchange can induce attraction. Provides production-mechanism-free (thermal) result. **Easy to calculate the potential in LQCD.** *D. O. Riska, N. N. Scoccola, PLB299('93)338 (pred.); A. Aktaset+ [H1], PLB588('04)17 (positive); J. M. Linket+ [FOCUS], PLB622('05)229 (negative)***. D* π π D– pΩ**

(I got the info. mainly from Laura, Valentina and Oton, but I never told it to people other than CF collaborators of mine.)

 \mathbf{D}^+ **p**

Summary

- **Correlation functions (CFs) can be utilized to constrain / examine** the hadron-hadron interactions (V_{hh}) , provided that
	- the pair purity (λ) is not very small,
	- **a** and V_{hh} dominates the correlation.
- **Recent data from ALICE and STAR enable us to access V** unexplored in previous works.
- Source size (R) dependence of CF is important to get knowledge **of the existence of a bound state around the threshold.**
	- **With a bound state, CF shows suppression at** $qR \sim 1$ **for** $a_0/R \sim 1$ **in** single-channel problems.
	- **Coupled-channel effects are suppressed for larger R.**
- **CFs involving charmed hadrons are charming and would attract** many hadron physicists.

Thank you for attention !

Coauthors of arXiv:1908.05414 (pΩ, ΩΩ) and arXiv:1911.01041 (pK–)

K. Morita S. Gongyo T. Hatsuda T. Hyodo

Y. Kamiya

K.Sasaki

ALICE

- **pΛ, pΣ⁰ and ΛΞ[–] correlation functions using the updated LQCD** potentials.
- **CF involving deuteron (K. Ogata, T. Fukui).**
- **Developing a framework to handle three-body correlations.**
- **Interactions between hadrons with charm.**
- **Simple Gaussian source function should be improved to include resonance decay effects as done in CATS. (c.f. B. Hohlweger's talk)**

...

Correlation Function (CF): Non-standard usage

- HBT, GGLP: CF + w.f. → Source Size Another way: $CF + Source Size \rightarrow w.f. \rightarrow hh$ interaction
- **Effect of hadron-hadron interaction on the wave function**
	- Assumption: Only s-wave (L=0) is modified.
	- **Non-identical particle pair, Gauss source.**

$$
\varphi_{\mathbf{q}}(\mathbf{r}) = e^{i\mathbf{q}\cdot\mathbf{r}} - j_0(qr) + \chi_q(r)
$$

\n
$$
\rightarrow C(\mathbf{q}) = \int d\mathbf{r} S(r) |\varphi_{\mathbf{q}}(\mathbf{r})|^2
$$

\n
$$
= 1 + \int d\mathbf{r} S(r) \{ |\chi_q(r)|^2 - |j_0(qr)|^2 \}
$$

K. Morita, T. Furumoto, AO, PRC91('15)024916

Corr. Fn. shows how much squared w. f. is enhanced → Large CF is expected with attraction Corr. Fn. shows how much squared w. f. is enhanced → Large CF is expected with attraction

Lednicky-Lyuboshits (LL) model

Lednicky-Lyuboshits analytic model

Asymp. w.f. + Eff. range corr. +
$$
\psi^{(-)} = [\psi^{(+)}]^*
$$

\n
$$
\psi_0(r) \rightarrow \psi_{\text{asy}}(r) = \frac{e^{-i\delta}}{qr} \sin(qr + \delta) = S^{-1} \left[\frac{\sin qr}{qr} + f(q) \frac{e^{iqr}}{r} \right]
$$

$$
\Delta C_{\rm LL}(q) = \int d\mathbf{r} S_{12}(r) \left(|\psi_{\rm asy}(r)|^2 - |j_0(qr)|^2 \right)
$$

$$
= \frac{|f(q)|^2}{2R^2} F_3 \left(\frac{r_{\rm eff}}{R} \right) + \frac{2 \text{Re} f(q)}{\sqrt{\pi} R} F_1(x) - \frac{\text{Im} f(q)}{R} F_2(x)
$$

 $(x = 2qR, R =$ Gaussian size, F_1, F_2, F_3 : Known functions) **Phase shifts**

$$
q \cot \delta = -\frac{1}{a_0} + \frac{1}{2}r_{\text{eff}}q^2 + \mathcal{O}(q^4) \rightarrow \delta \simeq -a_0q + \mathcal{O}(q^3)
$$

$$
\sin(qr + \delta) \simeq \sin(q(r - a_0) + \cdots)
$$
 **Node at r ~ a₀
for small q**

C(q) in the low momentum limit

Correlation function at small **q** (and r_{eff} =0) \rightarrow F_1 =1, F_2 =0, F_3 =1

$$
\Delta C_{\text{LL}}(q) \rightarrow \frac{|f(0)|^2}{2R^2} + \frac{2\text{Re}f(0)}{\sqrt{\pi}R} (q \rightarrow 0)
$$

$$
f(q) = (q \cot \delta - iq)^{-1} \simeq \left(-\frac{1}{a_0} + \frac{1}{2}r_{\text{eff}}q^2 - iq\right)^{-1} \rightarrow -a_0
$$

$$
C_{\text{LL}}(q \rightarrow 0) = 1 + \frac{a_0^2}{2R^2} - \frac{2a_0}{\sqrt{\pi}R} = 1 - \frac{2}{\pi} + \frac{1}{2} \left(\frac{a_0}{R} - \frac{2}{\sqrt{\pi}}\right)^2
$$

$$
1 - 2/\pi \simeq 0.36, \sqrt{\pi}/2 \simeq 0.89
$$

 $C(q \rightarrow 0)$ takes a minimum of 0.36 at $R/a_0 = 0.89$ in the LL model.

K– p interaction

Y TP AP

K– p correlation function data

■ K – p correlation function from high-multiplicity events of pp collisions

S. Acharya et al. (ALICE), PRL124('20)092301 [1905.13470]

• High precision data from low to high momentum ! c.f. Previous scatt. data & Kaonic atom data.

2.5

 1.5

1340

1360

 $[\mathbf{fm}]$

จิ

Ń

 $\ln f(K^-$

250

Enhanced at low k, cusp, Λ(1520), ...

200

Blue: Julich model grey: Coulomb

SIDDHARTA

1440

100

150

250

200

150

100

50

 Ω 50

 K^-p [mb]

 a_{-}

 $\sigma(K)$

KN-πΣ-πΛ Scattering Amplitude and Potential

- Amplitude in chiral SU(3) coupled-channels dynamics *Y. Ikeda, T. Hyodo, W. Weise, NPA881 ('12) 98*
	- **NLO meson-baryon effective Lagrangian (KN-πΣ-πΛ) + fit of Kaonic Hydrogen, Cross Section, Threshold branching ratio**
- Coupled-channels potential

K. Miyahara, T. Hyodo, W. Weise, PRC98('18)025201

Potential fitted to IHW amplitude

Y. Ikeda, T. Hyodo, W. Weise,NPA881 ('12) 98 K. Miyahara, T. Hyodo, W. Weise, PRC98('18)025201

Correlation Function with Coupled-Channels Effects

J. Haidenbauer, NPA 981('19)1; R. Lednicky, V. V. Lyuboshits, V. L. Lyuboshits, Phys. At. Nucl. 61('98)2950.

with Coul.

Single channel, w/o Coulomb (non-identical pair)

$$
C(\boldsymbol{q}) = 1 + \int d\boldsymbol{r} S(\boldsymbol{r}) \left[|\chi^{(-)}(\boldsymbol{r},\boldsymbol{q})|^2 - |j_0(q\boldsymbol{r})|^2 \right]
$$

Single channel, w/ Coulomb

$$
C(q) = \int dr S(r) \left[|\varphi^{C, \text{full}}(q, r)|^2 + |\chi^{C, (-)}(r, q)|^2 - |\dot{j}_0^C(qr)|^2 \right]
$$

\nFull free
\nCoulomb w.f. with Coul.
\nCoul. w.f.

Coupled channel, w/ Coulomb

$$
C_i(q) = \int dr S_i(r) \left[|\varphi^{C, \text{full}}(q, r)|^2 + |\chi_i^{C, (-)}(r, q)|^2 - |\dot{j}_0^{C}(qr)|^2 \right] + \sum_{j \neq i} \omega_j \int dr S_j(r) |\chi_j^{C, (-)}(r, q)|^2 \quad \text{is-wave w.f.}
$$

Outgoing B.C. in the i-th channel, ω_j = Source weight (ω_j =1)

Correlation Function with Coupled-Channels Effects

Correlation Function from Chiral SU(3) Potential (1)

- Corr. Fn. from Chiral SU(3) coupled-channels potential **+ Coulomb + threshold difference (for the first time !)** *Y. Kamiya, T. Hyodo, K. Morita, AO, W. Weise, PRL124('20)132501 [1911.01041].*
- Coupled-channels effect
	- **W.f. of other channels than** K^- **p decay in** $r < 1$ **fm.**
	- **But they contribute to corr. fn. meaningfully.**

Correlation Function from Chiral SU(3) Potential (2)

- "Free" parameters $=$ Source Size R, Source Weight ω_i \leftarrow Th+Exp.
	- $+$ Normalization + Pair purity $(\lambda) \leftarrow \text{Exp}$.
		- **Larger R** \rightarrow Smaller couple-channels effect from $\pi\Sigma$ **(Favorable values of R and ω^j are correlated)**
		- **Simple statistical model esitmate** $\omega_{\pi\Sigma} \sim \exp[(m_K+m_N-m_{\pi}-m_{\Sigma})/T] \sim 2.$

Comparison with other estimates

A.Ohnishi, ALICE week, Nov. 10, 2020 **40**

 $\frac{200}{200}$

ALICE

 k^* (MeV/c)

 $C_{\rm fit}$

 $C_{\text{fit}} + C_{\text{res}}$

 $R=0.9$ fm

 250

 $\overline{300}$

Source Size Dependence (2)

- **Experimental confirmation of coupled-channels contribution** → Source size dependence
	- **Channel w.f. other than K⁻ p are localized at around r=0. (Outgoing boundary condition for K⁻p)**
	- **Contribution of** $\pi\Sigma$ **source is suppressed for larger R.**

Source Size Dependence (2)

Corr. Fn. from pA & AA collisions will elucidate the role of $\pi\Sigma$

R ~ 1.6 fm $\rightarrow \pi \Sigma$ effects are suppressed.

