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arXiv paper is still “on hold”. Please be patient.

http://www2.yukawa.kyoto-u.ac.jp/~akira.ohnishi/Src/Org/Replica-arXiv.pdf

http://www2.yukawa.kyoto-u.ac.jp/~akira.ohnishi/Src/Org/Replica-arXiv.pdf
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Heavy-Ion Collisions on the Lattice ?

Initial Condition: Color Glass Condensate (CGC)

Early Stage: Glasma

Main Stage: Quark Gluon Plasma (QGP)

Final Stage: Hadron Gas

τ τ = 0 τ = τ
th

τ = τ
had

τ = τ
FO

CGC Glasma

CYM
+Jet

Hydro
+Jet

Hadron
Cascade

QGP Hadron Gas

Unreachable Dream ?Unreachable Dream ?
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Classical Field Evolution

Path integral of real time evolution 

Cancellation of amplitudes by exp(iS)
→ Severe sign problem

Classical Field Evolution

Euler-Lagrange equation choose
path with δS=0 → No sign problemS=0 → No sign problem

Useful in discussing far-from-equilibrium phenomena
condensate evolution (Time dep. Gross-Pitaevski), nuclear excitation (TD Hartree-
Fock), Inflation, high-energy heavy-ion collisions (classical Yang-Mills), …

But converges to incorrect equilibrium

Is ther framework for far-from-equilibrium
and around equilibrium ?

Is ther framework for far-from-equilibrium
and around equilibrium ?
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Replica evolutionReplica evolution
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Replica Partition Function (Quantum Mechanics)

Part. func. in Classical Mechanics

Part. func. in Quantum Mechanics (imag. time formalism) 

Part. func. in Replicas
(N classical systems interacting with τ-derivative terms     )

     Part. fn. of N classical systems interacting via V at temp. ξ
 Part. fn. of quantum mech. at temp. T=ξ/N (MD in HMC)ξ/N (MD in HMC)N (MD in HMC)∝ Part. fn. of quantum mech. at temp. T=ξ/N (MD in HMC)

     Part. fn. of N classical systems interacting via V at temp. ξ
 Part. fn. of quantum mech. at temp. T=ξ/N (MD in HMC)ξ/N (MD in HMC)N (MD in HMC)∝ Part. fn. of quantum mech. at temp. T=ξ/N (MD in HMC)
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Evolution of Replica-Index Average

Canonical equation of Motion for replica variables (x
τ
, p

τ
)

Replica index average

τ-averaged variables obey classical EOM approximately 
when fluc. among replicas are small.

τ-averaged variables obey classical EOM approximately 
when fluc. among replicas are small.

τ-derivative terms
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Replica Evolution

Replica Evolution
=ξ/N (MD in HMC) Classical Dynamics 

with Quantum Statistics in Equilibrium

Replica Evolution
=ξ/N (MD in HMC) Classical Dynamics 

with Quantum Statistics in Equilibrium
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Replica Evolution

Replicas = N classical systems interacting with τ-derivative terms (V)

Replica variables (x
τ
, p

τ
) are assumed to evolve with canonical EOM

Long (real) time evolution in 4+1D spacetime (space, τ, t)
samples correct quantum statistical configurations of x

τ
.

~ MD part of HMC

Replica index (τ) average of (x
τ
, p

τ
) obeys the classical EOM.

Replica evolution of field

Replace variables 

Mass renormalization & Subtracting zero point contribution

How about dynamical properties of replica evolution ? 

I will skip this page...



A. Ohnishi @ APLAT 2020, Aug. 7, 2020 11 

Replica Evolution
of a Single Harmonic Oscillator

Replica Evolution
of a Single Harmonic Oscillator
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Replica Evolution of a Harmonic Oscillator

Replica Hamiltonian = N free HO Hamiltonian

Expectation value of x2  in Replica

 

Fourier transf.

Matsubara freq. sum

Equal time observables of x are reproduced at N → ∞Equal time observables of x are reproduced at N → ∞

zero point
thermal
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Expectation value of x2 

Equal time observables of x are reproduced at N → ∞Equal time observables of x are reproduced at N → ∞

Classical

N=4

Quantum
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Time-Correlation Function

Time-correlation function (Unequal-time two-point function)

Quantum                                          Replica

Not perfect, but C
R
(t) roughly explains C

Q
(t) at T/N (MD in HMC)ω > 0.5Not perfect, but C

R
(t) roughly explains C

Q
(t) at T/N (MD in HMC)ω > 0.5
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Replica Evolution
in Scalar Field Theory

Replica Evolution
in Scalar Field Theory
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Replica Evolution in Scalar Field Theory

Replica evolution in field theory

Replace variables

Mass renormalization & Subtracting zero point contribution

Example: 4 theory

Counterterm (one loop)
Aarts, Smit ('97), Kapusta, Gale (textbook) 
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Momentum Distribution

Momentum distribution in replica

By subtracting the zero point part, we can avoid equipartition 
& Rayleigh-Jeans divergence.

Free field, Matsubara sum Thermal
→ Bose-EinsteinZero point
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Momentum Distribution

By subtracting the zero point part,
we can avoid the Rayleigh-Jeans divergence of energy.

By subtracting the zero point part,
we can avoid the Rayleigh-Jeans divergence of energy.
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Time-Correlation Function

Time-correlation function
(unequal-time two-point function at zero momentum)

With interaction (non-zero λ),),
C(t) shows damped oscillatory behavior.
→ Thermal mass & damping rate
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Thermal Mass

Thermal Mass

Leading Order (one-loop)

Resummed One-Loop

Two-Loop

Thermal mass
in Replica Evolution
~ Two-loop results

Thermal mass
in Replica Evolution
~ Two-loop results

Kapusta, Gale (textbook)
Parwani ('92, '93)
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Summary

Replica evolution is proposed as a quantum-statistics-improved 
classical field framework.

N classical field configurations evolves with the τ-derivative terms.

4+1D classical evolution → quantum stat. ensemble (HMC).

Replica-index (=imag. time) average provides classical field.

Subtracting zero point part from < 2 >
→ mass renormalization and removing Rayleigh-Jeans  divergence

Thermal mass ~ 2-loop perturbation ressults.

To be investigated

Comparison with previously proposed frameworks.
Hard mode effects [Bodeker, McLerran, Smilga ('95), Greiner, B.Muller ('97)],  
Field-particle sim. [Dumitru, Nara ('05), Dumitru, Nara, Strickland ('07)], 2PI 
[Aarts, Berges ('02), Hatta, Nishiyama ('12)], … 

Formal discussions, e.g. relation to Boltzmann Eq., A.Muller, Son ('04). 

Shear viscosity [Matsuda, 6-1C], Thermalization, ...
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Thank you for your attention !

AO Hidefumi Matsuda
Teiji Kunihiro

Toru T. Takahashi 

http://www2.yukawa.kyoto-u.ac.jp/~akira.ohnishi/Src/Org/Replica-arXiv.pdf

http://www2.yukawa.kyoto-u.ac.jp/~akira.ohnishi/Src/Org/Replica-arXiv.pdf
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Lattice Setup

Lattice size: 323 x 4 (L=32, N=4)

Temperature: T=0.5, Coupling: λ),=0.5-10, bare mass:m=0, 0.5

Average over replica index (τ) and replica ensemble (Nconf=1000)

Thermal ensemble is prepared by solving the Langevin equation 
at temperature ξ=NT=2.

EOM is solved in the leap-frog method (reversible !)
with the time step of Δt=0.025 until t=500 after equilibration.t=0.025 until t=500 after equilibration.

A few hours for each (λ),, m) on iCore7 PC (w/o MP).
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Rayleigh-Jeans Divergence

Replica evolution calculation with mass counterterm
should give correct quantum field calc. results in the large N lim.,
but momentum dist. does not necessarily damps exponentially
at finite N. 
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Rayleigh-Jeans Divergence

With N >= 2,  free field energy converges in the replica method.

Convergence cond.
2(N-1) > 1 → N > 1.5

We can remove
divergence of energy
in the replica method
(N>=ξ/N (MD in HMC)2)
with mass 
counterterm(s).

We can remove
divergence of energy
in the replica method
(N>=ξ/N (MD in HMC)2)
with mass 
counterterm(s).
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Application to Gauge theories and Fermion Systems

Gauge theory

Temporal component of the gauge field is Wick-rotated in the 
imaginary time formalism, and replica evolution cannot be applied 
as it is, except for the case in the temporal gauge (A0=0).

Fermions

We do not know (yet) how to handle Grassman number in replica.

Time-dependent Hartree-Fock theory may help.
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Damping Rate

Apparent damping rate in replica evolution is larger than 2-loop 
results at small coupling. Why ?

Classical results (N=1) better agrees with 2-loop results.
Aarts (‘01)

Power spectrum shows wide spread of the mass, but falls off 
quickly. Fragmentation of zero-momentum single particle mode ?
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Commutator in Classical Dynamics

Classical-Quantum Correspondence

Unequal-time Poisson bracket Aarts (‘01)

n=0 term reproduces quantum mechanical result in a HO.

Unequal-time derivative can be obtained by using the Trotter 
formula together with Hessian matrix. 
Kunihiro, Muller, AO, Schafer, Takahashi, Yamamoto (‘10) 
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Previous Attempts

Separate soft and hard modes
Soft modes still have classical statistics, cutoff needs to be small.

Effective action of soft modes by integrating hard modes
→ dissipation and fluctuation from integrated hard modes
D. Bodeker, L. D. McLerran and A. V. Smilga, PRD (‘95)52;
C. Greiner and B. Muller, PRD 55 (‘97)1026.

Introducing mass counterterm → Similar results with 2PI
e.g. G. Aarts and J. Smit, PLB 393 (‘97) 395.

Coupled equation of field and particles

Solve coupled equation of field and particles → faster equilibration  
A. Dumitru and Y. Nara, PLB 621 (‘05) 89.

Two particle irreducible (2PI) effective action approach
→ Large numerical cost to simulate 3+1D fields
J. Berges, AIP Conf. Proc. 739(‘04)1; G. Aarts, J. Berges, PRL 88(‘02)041603; Y. 
Hatta, A. Nishiyama, NPA 873(‘12)47. 
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