重イオン衝突における ハドロン相関に関する理論とその展望

京大基研 大西 明

ELPH 研究会 CO31「多彩なビーム実験と多様な理論的手法で迫る ハドロン間相互作用」,東北大学 ELPH, Nov.4-5, 2021.

- Introduction
- ・ハドロン相関関数の理論
 - Koonin-Pratt公式、LL模型、結合チャネル
- ・ 最近&将来の相関関数によるハドロン間相互作用研究例
 - \circ NE- Λ , D⁻p, others
- Summary

なぜハドロン間相互作用?

- ・ハドロン物理の面白さ
 - ・異なる構成粒子・相互作用からくる原子核構造の変化
 - → エキゾチック核・ハドロン
 - ・様々なハドロン間相互作用 → 一般化した「核力」の理解
 - ・高密度物質中のハドロン
 - ・ QCDの対称性

- → ハイペロン・パズルの解決を目指す
- → フレーバー・カイラル・重クォーク 対称性

- ・多彩なビーム実験
 - ・ハドロンビーム、電子ビーム、光子ビーム、重イオンビーム、...
 (Multi deliverer era)
 - ・ハイパー核、中間子核、中間子原子、粒子スペクトル、相関関数、...
- ・多様な理論的手法
 - ・中間子交換、クォーク模型、カイラルEFT、格子QCD、HQCD ...
 - ・ 少数系、クラスター、平均場、直接反応、輸送模型、統計模型、...

ハドロン間相互作用への理論的アプローチ

- Nuclear force models: meson exch., quark model, ... (need data)
- Ab initio: chiral EFT, lattice QCD (need data or CPU resources)

ハドロン間相互作用への実験的アプローチ

- Experimental approaches
 - hh scattering (NN, YN, πN , KN)
 - Hadronic nuclei (normal nuclei, hypernuclei, kaonic nuclei)
 - Hadronic atom $(\pi^-, K^-, \Sigma^-, \Xi^-, ...)$
 - Femtoscopy
- Femtoscopic study of hh interactions
 - Applicable to various hh pairs (NN, YN, KN, DN, YY, Yd, YNN ...)
 - Valid when the source is chaotic
 - Weakly decaying particles \rightarrow Good pair purity
 - Future measurements:
 Charmed hadron, hNN,

$$C(p_1, p_2) = rac{N_{12}(p_1, p_2)}{N_1(p_1)N_2(p_2)}$$

A. Ohnishi @ ELPH2021 (C031), Nov.5, 2021, ELPH, Tohoku U./Online 4

 π

 \bigotimes

相関関数によるハドロン間相互作用の面白い点

- ・様々な種類のハドロン間相互作用について
 実験から情報が得られる
- ・相関関数のサイズ依存性(pp,pA,AA衝突)から、 束縛状態(ハドロン分子状態)の有無を推定できる

・重イオン(高エネルギー原子核衝突)研究者と ハドロン研究者の橋渡しができる(多彩なビーム実験!) ・相関関数自体の理論研究者はまだ少ない(Blue Ocean)

相関関数の理論(1): Koonin-Pratt (KP) formula

- Correlation function (CF)
 - CF=convolution of source fn. and |w.f.|² (Koonin-Pratt formula)

Koonin('77), Pratt+('86), Lednicky+('82)

$$C(\boldsymbol{p}_1, \boldsymbol{p}_2) = \frac{N_{12}(\boldsymbol{p}_1, \boldsymbol{p}_2)}{N_1(\boldsymbol{p}_1)N_2(\boldsymbol{p}_2)} \simeq \int d\boldsymbol{r} \underline{S(\boldsymbol{r})} |\varphi_{\boldsymbol{q}}(\boldsymbol{r})|^2$$

source fn. relative w.f.

- Source size from quantum stat. + CF
 Hanbury Brown & Twiss ('56); Goldhaber, Goldhaber, Lee, Pais ('60)
- Hadron-hadron interaction from source size + CF
 - CF of non-identical pair from static spherical source Lednicky, Lyuboshits ('82); Morita, Furumoto, AO ('15)

$$C(\boldsymbol{q}) = 1 + \int d\boldsymbol{r} S(r) \left\{ |\varphi_0(r)|^2 - |j_0(qr)|^2 \right\} \quad (\varphi_0 = \text{s-wave w.f.})$$

CF shows how much $|\varphi|^2$ is enhanced $\rightarrow V_{hh}$ effects !

相関関数の理論(2):Lednicky-Lyuboshits (LL)模型

 Lednicky-Lyuboshits analytic model (Asymp. w.f.+eff. range corr.+Gaussian source) Lednicky, Lyuboshits ('82)

$$\psi_{0}(r) \to \psi_{asy}(r) = \frac{e^{-i\delta}}{qr} \sin(qr+\delta) = \mathcal{S}^{-1} \left[\frac{\sin qr}{qr} + f(q) \frac{e^{iqr}}{r} \right]$$

$$C_{LL}(q) = 1 + \int dr S_{12}(r) \left(|\psi_{asy}(r)|^{2} - |j_{0}(qr)|^{2} \right)$$

$$= 1 + \frac{|f(q)|^{2}}{2R^{2}} F_{3} \left(\frac{r_{eff}}{R} \right) + \frac{2\text{Re}f(q)}{\sqrt{\pi R}} F_{1}(2x) - \frac{\text{Im}f(q)}{R} F_{2}(2x)$$

$$(r = qR, R = \text{Gaussian size}, F_{1}, F_{2}, F_{3} \in \text{Known functions})$$

・低エネルギー散乱振幅

$$q \cot \delta = -\frac{1}{a_0} + \frac{1}{2}r_{\text{eff}}q^2 + \mathcal{O}(q^4) \to f(q) = (q \cot \delta - iq)^{-1}$$

散乱長と有効レンジ(とソースサイズ)があれば相関関数が求まる!

LL模型を用いた低エネルギー散乱パラメータ決定例

- ・K⁻p相互作用
 - ・重イオン衝突からの
 K⁻p相関関数
 - LL公式から求めた 散乱パラメータは SIDDHARTAと 無矛盾

Acharya+[ALICE], PLB822('21),136708 [2105.05683]

Siejka+[STAR, preliminary], NPA982 ('19)359.

- - ・ pp 13 TeVからのpΦ相関関数
 - ・ LL公式による散乱パラメータ決定 (本当はJ=1/2, 3/2 が混ざっている はずなのだが...)
- ・ ヘヘ相互作用
 - ・ 量子統計性+LL公式によるfit
 → (a₀, r_{eff})の領域制限
 L. Adamczyk+[STAR], PRL114('15)022301;

<u>S. Acharya+[ALICE], PLB797('19)134822</u>

Acharya+[ALICE], PRL127 (*21) 17, 172301[2105.05578]

LL模型を用いた束縛状態の有無の推定(1)

・ゼロレンジでのLL模型

$$r_{\text{eff}} = 0 \to q \cot \delta = -1/a_0 \to f(q) = (q \cot \delta - iq)^{-1} = -\frac{R}{R/a_0 + iqR}$$
$$C(x, y) = 1 + \frac{1}{x^2 + y^2} \left[\frac{1}{2} - \frac{2y}{\sqrt{\pi}} F_1(2x) - xF_2(2x) \right] \quad (x = qR, y = R/a_0)$$
$$= \frac{1}{2} \left(\frac{1}{y} - \frac{2}{\sqrt{\pi}} \right)^2 + 1 - \frac{2}{\pi} \quad (F_1 \to 1, F_2 \to 0 \text{ at } x \to 0)$$

・ 束縛状態がある時、
 相関関数は抑制される。
 R/a₀=√π/2~0.89
 において最小値
 1-2/π ~0.36

Correlation function (LL model)

T

E.g. AO, Morita, Miyahara, Hyodo ('16)

LL模型を用いた束縛状態の有無の推定(2)

- ・クーロン引力がある場合には、束縛状態からdipが現れる。
 - ・クーロン引力による増大がGamow因子で表される(近似的)場合

$$C(q) \to C_{\text{strong}}(q) \times A_{\text{Gamow}}(\eta)$$
$$A_{\text{Gamow}}(\eta) = 2\eta/(\exp(2\eta) - 1) \ (\eta = Z_1 Z_2 \mu |ya_0|/x)$$

Kamiya+('21), 2108.09644

相関関数による束縛状態存在の示唆の例

- ・Ωp束縛状態
 - 格子QCDは束縛状態を予言 相関関数計算はdipを予言 Iritani+[HAL QCD]('19), Morita+('20)
 - ・データも重イオン衝突で dipを示す。
- ・K⁻p束縛状態
 - ・ Λ(1405)はKN束縛状態
 → 重イオン衝突でdip
 - ・ 散乱パラメータはSIDDARTAと consistent
 - pp衝突では結合チャネル効果から dipは見えない

相関関数の理論(3):結合チャネル効果

- ・結合チャネル効果を含む相関関数
 - Koonin-Pratt-Lednicky-Lyuboshits-Lyuboshits (KPLLL)公式 Coupled-channel contributions with y⁽⁻⁾ boundary cond. Lednicky, Lyuboshits, Lyuboshits, Phys. Atom. Nucl. 61 (1998), 2950; J. Haudenbauer, NPA981('19) 1 [1808.05049]; Y. Kamiya, T.Hyodo, K.Morita, AO, W.Weise, PRL('20). K⁻ j=1 x

$$C(q) = \int dr \sum_{j} \omega_{j} S_{j}(r) |\Psi_{j}^{(-)}(r)|^{2}$$

$$= 1 - \int dr S_{1}(r) |j_{0}(qr)|^{2} + \int dr \sum_{j} \omega_{j} S_{j}(r) |\psi_{j}^{(-)}(q;r)|^{2}$$

$$\psi_{j=1}(r) \rightarrow [e^{iqr} + A_{1}(q)e^{-iqr}]/2iqr \quad (\omega_{1} = 1)$$

$$\psi_{j\neq1}(r) \rightarrow A_{j}(q)e^{-iqr}/2iqr \quad [\Psi^{(-)} \text{ boundary condition}]$$
(No Coulomb case)
$$(\text{No Coulomb case})$$

$$Source \quad \text{Normalized weight}}$$

• Source size R and weight ω_i (j≠1) are taken as the parameter.

結合チャネル効果の切り分け

- ・結合チャネル効果はソースサイズ依存性から推測可能
 - 結合するチャネルの波動関数 → 小さなrで有意、遠方で消える
 - ・大きなソースから散乱パラメータを決め、
 小さなソースで結合効果を調べる!

w.f. Kamiya+,arXiv:1911.01041v1

Source Size Dependence of $C(K^-p)$

 Coupled-channel effects are suppressed when R is large, and "pure" K⁻ p wave function may be observed in HIC.

Y. Kamiya, T. Hyodo, K. Morita, AO, W. Weise, PRL124('20)132501.

- ΞN - $\Lambda\Lambda$ interactions
- . Charmed hadron interactions
- . Others

H dibaryon state, to be bound or not to be bound ?

- H-dibaryon: 6-quark state (uuddss)
 - Prediction: *R.L.Jaffe*, *PRL38(1977)195*
 - Ruled-out by double Λ hypernucleus *Takahashi et al.,PRL87('01) 212502*
 - Resonance or Bound "H" ? *Yoon et al.(KEK-E522)+AO ('07)*
- Lattice QCD results
 - Bound (below ΛΛ threshold): *HALQCD('11), NPLQCD('11,'13), Mainz('19)* (heavier quark mass or SU(3) limit)
 - Resonance (Bound state of NΞ): *HAL QCD ('16,18)* (HAL preliminary)
 - Virtual Pole (around NΞ threshold) HAL QCD ('20) (almost physical m_a)

We examine LQCD NZ-AA potential and discuss H using CF !

$NE-\Lambda\Lambda$ potential from Lattice QCD

 N=-AA potential at almost physical quark mass (m_π=146 MeV) by HAL QCD Collaboration
 K. Sasaki et al. [HAL QCD Collab.], NPA 998 ('20) 121737 (1912.08630)

 $V_{N \equiv \{1,2_0\}} \, \left[\mathrm{MeV} \right]$

- Strong attraction in (T,S)=(0,0) of NE
- Weak attraction in AA (Coupling with NE causes AA attraction)
- There is no bound state in N Ξ -AA system (except for Ξ^- atom), but there is a virtual pole around the N Ξ threshold (3.93 MeV below n Ξ^0 threshold) on the irrelevant Riemann sheet, (+, -, +) [relevant=(-,+,+)] (sign of Im (eigenmomentum))

pp & pA 衝突からの三⁻p & AA相関関数(1)

- Correlation function data from pp and pA collisions
 S. Acharya et al. [ALICE], PLB 797('19)134822 (AA); PRL123('19)112002 (=p from pA); Nature 588('20)232 (=p from pp).
 - CF(Ξ⁻p) is enhanced at low q.
 → Coulomb+Att. pot.
 - $CF(\Lambda\Lambda)$ is enhanced from quantum stat. result.

 \rightarrow Weakly attractive pot.

pp & pA 衝突からの三⁻p & ΛΛ相関関数(2)

- Correlation function with coupled-channel effects using lattice QCD potential
 Y.Kamiya, K.Sasaki, T.Fukui, T. Hyodo, K.Morita, K.Ogata, A.Ohnishi, T. Hatsuda, arXiv:2108.09644.
 - Source size in pp collisions is obtained from x² fit. (Consistent with ALICE analysis result)
 - R from pA is given from scaling.
 - Coupling effects are small (w's do not change results much)
 - HAL QCD potential well explains the data !

$\Xi^{-}p$ correlation function

$\Lambda\Lambda$ correlation function

$\Lambda\Lambda$ correlation and $\Lambda\Lambda$ interaction

Charmed Hadron Interactions (1)

- C(q) including a charmed hadron
 - Extremely important in recent hadron physics.
- D⁻(c^{bar}d)-p(uud) correlation
 - Probes Θ_c (c-ud-ud) state (replace s in Θ (s-ud-ud) with c) π π \square D. O. Riska, N. N. Scoccola, PLB299('93)338 (pred.); A. Aktaset+ [H1], D p PLB588('04)17 (positive); J. M. Linket+ [FOCUS], PLB622('05)229 (negative).
 - Proposed potentials generally predict weak or repulsive interaction. *Hofmann, Lutz (`05) (repulsive); Haidenbauer+(`07) (repulsive); Yamaguchi+(`11) (att., w/ bs); Fontoura+(`13) (repulsive)*
 - Attraction from two pion exchange S. Yasui, K. Sudoh, PRD80('09)034008.
 - Easy to calculate the potential in LQCD. Y. Ikeda et al. (private comm.)

Model	$a_{\bar{D}N}^{I=0}$	$a_{\bar{D}N}^{I=1}$	a _Ď	- 1. Hoffmann, Lutz (*05
SU(4) contact [185]	-0.16	-0.26	-0.24	2 Haidenbauer+ (*07)
Meson exchange [194]	0.07	-0.45	-0.32	3 Vamaguchi+('11)
Pion exchange [192]	-4.38	-0.07	-1.15	$\int Iumuguchi + (11)$
Chiral quark model [219]	0.03-0.16	-(0.20-0.25)	-(0.14-0.15)	4. ronioura+(*13)

Taken from Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP96('17)88

A. Ohnishi @ ELPH2021 (C031), Nov.5, 2021, ELPH, Tohoku U./Online 24

D*

Charmed Hadron Interactions (2)

- ・ Charmを含むハドロン間相互作用の予言は大きく違う!
 - ・多くの理論は斥力 or 浅い引力
 - π交換を取り入れた場合のみ強い引力あり

Charmed Hadron Interactions (3)

• D⁻(cd)-p(uud) CFs from proposed scattering length

Kamiya, Hyodo, AO (in prog.)

- One-range Gaussian potential strength is fitted to proposed a_0 with the range of ρ meson exchange.
- Measurable difference is found.

Recent & Near-Future Correlation Functions

- $p^{bar}p^{bar}$, $p\Lambda^{bar}$ E.g. A. Kisiel [ALICE], Acta Phys.Polon.Supp. 6 ('13)519
- K[±]K⁰, S.Acharya+ [ALICE], PLB774 ('17)64 [1705.04929]
 → Šlightly suppressed at low q Tetraquark component of a₀ meson
- Tetraquark component of a_0 meson • pΛ [2104.04427], pφ [2105.05578], $p\Lambda^{bar}$, $\Lambda\Lambda^{bar}$ [2105.05190], pΣ⁰ ['20 [1910.14407]] (ALICE) 0.97
- pD^{\pm} (in prog.) Scatt. length is strongly model dependent. q~(GeV) \rightarrow To be discriminated by experiment !

	Model	$a_{\bar{D}N}^{I=0}$	$a_{\bar{D}N}^{I=1}$	a _Ď	Hofmann+('05)
D ^{bar} p	SU(4) contact [185] Meson exchange [194]	-0.16 0.07	-0.26 -0.45	-0.24 -0.32	Haidenbauer+('07) Yamaguchi+('11) Fontoura+('13)
•	Pion exchange [192] Chiral quark model [219]	-4.38 0.03-0.16	- 0.07 -(0.20-0.25)	-1.15 -(0.14-0.15)	

• deuteron-hadron CF

S. Mrówczyński and P. Słoń, Acta Phys.Polon.B51('20)1739 [1904.08320]; F. Etminan, M. M. Firoozabadi, [1908.11484]; J. Haidenbauer, PRC102('20)034001 [2005.05012]; K.Ogata, T.Fukui, Y.Kamiya, AO [2103.00100].

相関関数によるハドロン間相互作用研究の展望

Summary

- ・相関関数を用いたハドロン間相互作用の研究(Femtoscopic study of HHI)は様々なハドロン対について適用でき、束縛状態の有無などエキゾチックハドロン構造研究にも有用。
 - ・今後数年で100対程度のハドロン間相互作用の情報が得られる(?)
 - ・ただし低運動量領域にのみシグナルがあるため、 s波相互作用しか見えない
 - ・興味あるハドロン対の「散乱長」をください。
- ・多くの宿題はあります。
 - データから直接散乱パラメータは得られないか?
 (現時点では限られた対のみで可能)
 - ・ソース関数が静的なガウス関数は簡単すぎる! (現時点の精度で1次元相関関数ではサイズ調整で対応可と期待)
 - ・3体相関関数から3体力は引き出せるのか?
- Stay tuned !

Thank you for your attention !

Other bound states ?

1.1

1.05

,≷ 0.95

- ハハ-NΞ
 - C_{AA}(q) in AA(RHIC) and pp(LHC) are similar (No b.s. below AA).
 - LQCD predicts a virtural pole near NE threshold, which can be detected as the cusp in C_{AA}(q).
 NLO(600) potential predicts the same. (The fate of H particle)
 K. Sasaki+[HAL QCD], NPA998('20)121737; Y. Kamiya+, 2108.09644; Haidenbauer('19).
 - K^{bar}N
 - Λ(1405) is believed to be the bound state of KN, and "dip" is expected at R ~ a₀.
 - However, Coulomb and coupled-channel effects modify the dip-like behavior. Kamiya+ ('20).

